$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$












1












$begingroup$


I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.




$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$




Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$



On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$



Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:30










  • $begingroup$
    Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
    $endgroup$
    – reuns
    Dec 14 '18 at 3:28


















1












$begingroup$


I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.




$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$




Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$



On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$



Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:30










  • $begingroup$
    Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
    $endgroup$
    – reuns
    Dec 14 '18 at 3:28
















1












1








1





$begingroup$


I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.




$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$




Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$



On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$



Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.










share|cite|improve this question











$endgroup$




I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.




$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$




Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$



On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$



Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.







improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 2:31









TonyK

42.6k355134




42.6k355134










asked Dec 14 '18 at 2:24









JaveJave

472114




472114












  • $begingroup$
    The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:30










  • $begingroup$
    Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
    $endgroup$
    – reuns
    Dec 14 '18 at 3:28




















  • $begingroup$
    The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:30










  • $begingroup$
    Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
    $endgroup$
    – reuns
    Dec 14 '18 at 3:28


















$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30




$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30












$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28






$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28












1 Answer
1






active

oldest

votes


















2












$begingroup$

The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.



But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$



$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$



Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$
, and the integral on the left-hand side of $(1)$ converges. And we are done!






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038843%2fint-0-infty-e-xxn-1dx-is-convergent-for-n0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.



    But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$



    $$begin{align}
    left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
    &=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
    end{align}$$



    Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
    right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$
    , and the integral on the left-hand side of $(1)$ converges. And we are done!






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.



      But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$



      $$begin{align}
      left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
      &=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
      end{align}$$



      Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
      right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$
      , and the integral on the left-hand side of $(1)$ converges. And we are done!






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.



        But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$



        $$begin{align}
        left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
        &=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
        end{align}$$



        Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
        right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$
        , and the integral on the left-hand side of $(1)$ converges. And we are done!






        share|cite|improve this answer











        $endgroup$



        The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.



        But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$



        $$begin{align}
        left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
        &=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
        end{align}$$



        Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
        right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$
        , and the integral on the left-hand side of $(1)$ converges. And we are done!







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 14 '18 at 3:51

























        answered Dec 14 '18 at 3:45









        Mark ViolaMark Viola

        132k1275173




        132k1275173






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038843%2fint-0-infty-e-xxn-1dx-is-convergent-for-n0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei