Show $int_0^a f(x),dx + int_0^b f^{-1}(x),dx ge ab$ for strictly increasing function $f(x)$












2












$begingroup$


Let $f: [0, infty) to [0, infty)$ be continuous and strictly increasing and with $f(0) = 0$. Prove that $$int_0^a f(x),dx + int_0^b f^{-1}(x),dx ge ab$$ for any $a, b > 0$, and give a condition for equality to hold.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
    $endgroup$
    – user217285
    Sep 5 '15 at 20:59












  • $begingroup$
    math.stackexchange.com/questions/1132153/…
    $endgroup$
    – StubbornAtom
    Aug 2 '18 at 16:14
















2












$begingroup$


Let $f: [0, infty) to [0, infty)$ be continuous and strictly increasing and with $f(0) = 0$. Prove that $$int_0^a f(x),dx + int_0^b f^{-1}(x),dx ge ab$$ for any $a, b > 0$, and give a condition for equality to hold.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
    $endgroup$
    – user217285
    Sep 5 '15 at 20:59












  • $begingroup$
    math.stackexchange.com/questions/1132153/…
    $endgroup$
    – StubbornAtom
    Aug 2 '18 at 16:14














2












2








2


2



$begingroup$


Let $f: [0, infty) to [0, infty)$ be continuous and strictly increasing and with $f(0) = 0$. Prove that $$int_0^a f(x),dx + int_0^b f^{-1}(x),dx ge ab$$ for any $a, b > 0$, and give a condition for equality to hold.










share|cite|improve this question











$endgroup$




Let $f: [0, infty) to [0, infty)$ be continuous and strictly increasing and with $f(0) = 0$. Prove that $$int_0^a f(x),dx + int_0^b f^{-1}(x),dx ge ab$$ for any $a, b > 0$, and give a condition for equality to hold.







calculus real-analysis integration inverse






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 5 '15 at 21:21









Peter Woolfitt

18.6k54480




18.6k54480










asked Sep 5 '15 at 20:43







user268284















  • 2




    $begingroup$
    Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
    $endgroup$
    – user217285
    Sep 5 '15 at 20:59












  • $begingroup$
    math.stackexchange.com/questions/1132153/…
    $endgroup$
    – StubbornAtom
    Aug 2 '18 at 16:14














  • 2




    $begingroup$
    Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
    $endgroup$
    – user217285
    Sep 5 '15 at 20:59












  • $begingroup$
    math.stackexchange.com/questions/1132153/…
    $endgroup$
    – StubbornAtom
    Aug 2 '18 at 16:14








2




2




$begingroup$
Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
$endgroup$
– user217285
Sep 5 '15 at 20:59






$begingroup$
Wiki has a nice proof without words of this: en.wikipedia.org/wiki/Young's_inequality#/media/…
$endgroup$
– user217285
Sep 5 '15 at 20:59














$begingroup$
math.stackexchange.com/questions/1132153/…
$endgroup$
– StubbornAtom
Aug 2 '18 at 16:14




$begingroup$
math.stackexchange.com/questions/1132153/…
$endgroup$
– StubbornAtom
Aug 2 '18 at 16:14










3 Answers
3






active

oldest

votes


















7












$begingroup$

Note that
$$int_0^cf(x),dx+int_0^{f(c)}f^{-1}(x),dx=cf(c)$$



You can think of this as the area of the rectangle with $(0,0)$ for one corner and $(c,f(c))$ for the opposite corner.



Without loss of generality, let $f(a)le b$. Then
$$int_0^af(x),dx+int_0^bf^{-1}(x),dx=af(a)+int_{f(a)}^bf^{-1}(x),dx$$



Now since $f(x)$ is strictly increasing, we have $f^{-1}(x)>a$ for $x>f(a)$. Hence
$$int_{f(a)}^bf^{-1}(x),dxge aleft(b-f(a)right)$$
with equality if and only if $b=f(a)$.



Putting this together, we get
$$int_0^af(x),dx+int_0^bf^{-1}(x),dxge af(a)+a(b-f(a))=ab$$
with equality if and only if $b=f(a)$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Well done! +1....
    $endgroup$
    – Mark Viola
    Sep 5 '15 at 22:12



















1












$begingroup$

As @Peter Woolfitt provide the solution, Here is my view



Set $f(x)=y,x=varphi(y)$



$varphi(f(x))=x$



Set $displaystyle F(t)=int_0^af(x)dx+int_0^tvarphi(y)dy-at$



take the derivative of this with respect to $F(t)$



we have $F'(t)=varphi(t)-a$



and by the conditions $varphi(0)=0$, $varphi(t)$ monotonic increasing.



Set $F'(t)=0$, we got $varphi(t_0)=a$, and $t_0=varphi^{-1}(a)=f(a)$



When $t in (0,t_0)$, $F(t)$ monotonic decreasing, $t in (t_0,+infty)$, $F(t)$ monotonic increasing



$$
F(t_0)=int_0^af(x)dx+int_0^{t_0}varphi(y)dy-at_0\
$$



$$
F(t_0)=int_0^af(x)dx+int_0^{f(a)}varphi(y)dy-af(a)\
$$



change of variable
$$
F(t_0)=int_0^af(x)dx+int_0^{a}varphi(f(x))d(f(x))-af(a)\
$$



$$
F(t_0)=int_0^af(x)dx+int_0^{a}xd(f(x))-af(a)\
$$



$$
F(t_0)=int_0^af(x)dx+xf(x)Big|_0^a-int_0^{a}f(x)d(x)-af(a)=0\
$$



Finally, we got $F(t)geqslant 0$ when $t_0=f(a)=b$, $a=varphi(b)$, the equation is satisfied



$$
int_0^af(x)dx+int_0^bvarphi(y)dy=ab
$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    We remark that the integrals are well-defined by Theorem 6.9 of Rudin's Principles of Mathematical Analysis.




    Theorem 6.9 (Rudin). If $f$ is monotonic on $[a, b]$, and if $alpha$ is continuous on $[a, b]$, then $f in mathscr{R}(alpha)$. (We still assume, of course, that $alpha$ is monotonic.)




    By definition, there exists a sequence of partitions $(P_n)$ of $[0, a]$ such that$$U(P_n, f) to int_0^a f(x),dx$$and sequence of partitions $(Q_n)$ of $[0, b]$ such that$$L(Q_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Let $P_n' = P_n cap f^{-1}(Q_n)$, $tilde{P}_n = P_n' cap [0, a]$, $Q_n' = Q_n cap f(P_n)$, and $tilde{Q}_n = Q_n' cap [0, b]$. Then $U(tilde{P}_n, f) le U(P_n, f)$, $L(tilde{Q}_n, f^{-1}) ge L(Q_n, f^{-1})$ and so we have$$U(tilde{P}_n, f) to int_0^a f(x),dx,text{ }L(tilde{Q}_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Replace $P_n$ by $tilde{P}_n$ and $Q_n$ with $tilde{Q}_n$. Because $f$ is strictly increasing,$$U(P_n, f) = sum_{i=1}^p f(x_i)(x_i - x_{i-1}),$$where $P_n = {x_0, dots, x_p}$, and similarly,$$L(Q_n, f^{-1}) = sum_{j=1}^q f^{-1}(y_{j-1})(y_j - y_{j-1}),$$where $Q_n = {y_0, dots, y_q}$. Also,$$ab = left(sum_{i=1}^p (x_i - x_{i-1})right)left( sum_{j=1}^q(y_j - y_{j-1})right).$$Let $P_n' = {x_0, dots, x_p, dots, x_{p'}}$ and $Q_n' = {y_0, dots, y_q, dots, y_{q'}}$. Realizing that, we can write$$U(P_n, f) = sum_{i=1}^p sum_{y_j le f(x_i)} (y_j - y_{j-1})(x_i - x_{i-1}) = sum_{i=1}^p sum_{y_j le f(x_i)} (x_i - x_{i-1})(y_j - y_{j-1})$$and$$L(Q_n, f^{-1}) = sum_{j=1}^q sum_{x_i le f^{-1}(y_{j-1})}(x_i - x_{i-1})(y_j - y_{j-1}) = sum_{j=1}^q sum_{f(x_i) < y_j} (x_i - x_{i-1})(y_j - y_{j-1}),$$we obtain $ab le U(P_n, f) + L(Q_n, f^{-1})$ since the left-hand side involves summing over fewer terms. Taking limits gives the required identity.



    When $f(a) = b$, we obtain equality because the sums are equal. To see the converse, we use an argument like the one in Exercise 6.2 of Rudin's Principles of Mathematical Analysis.




    Exercise 6.2 (Rudin). Suppose $f ge 0$, $f$ is continuous on $[a, b]$, and $int_a^b f(x),dx = 0$. Then $f(x) = 0$ for all $x in [a, b]$. (See here for a solution.)




    If $f(a) > b$, find a neighborhood $N$ of which this is true; one of the sums in the above argument will consist of more terms and the extra contribution will not converge to zero as this contribution is giving $int_N (f(x) - b),dx > 0$. Similarly, if $f(a) < b$.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1423492%2fshow-int-0a-fx-dx-int-0b-f-1x-dx-ge-ab-for-strictly-increasing%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown
























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      Note that
      $$int_0^cf(x),dx+int_0^{f(c)}f^{-1}(x),dx=cf(c)$$



      You can think of this as the area of the rectangle with $(0,0)$ for one corner and $(c,f(c))$ for the opposite corner.



      Without loss of generality, let $f(a)le b$. Then
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dx=af(a)+int_{f(a)}^bf^{-1}(x),dx$$



      Now since $f(x)$ is strictly increasing, we have $f^{-1}(x)>a$ for $x>f(a)$. Hence
      $$int_{f(a)}^bf^{-1}(x),dxge aleft(b-f(a)right)$$
      with equality if and only if $b=f(a)$.



      Putting this together, we get
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dxge af(a)+a(b-f(a))=ab$$
      with equality if and only if $b=f(a)$.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Well done! +1....
        $endgroup$
        – Mark Viola
        Sep 5 '15 at 22:12
















      7












      $begingroup$

      Note that
      $$int_0^cf(x),dx+int_0^{f(c)}f^{-1}(x),dx=cf(c)$$



      You can think of this as the area of the rectangle with $(0,0)$ for one corner and $(c,f(c))$ for the opposite corner.



      Without loss of generality, let $f(a)le b$. Then
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dx=af(a)+int_{f(a)}^bf^{-1}(x),dx$$



      Now since $f(x)$ is strictly increasing, we have $f^{-1}(x)>a$ for $x>f(a)$. Hence
      $$int_{f(a)}^bf^{-1}(x),dxge aleft(b-f(a)right)$$
      with equality if and only if $b=f(a)$.



      Putting this together, we get
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dxge af(a)+a(b-f(a))=ab$$
      with equality if and only if $b=f(a)$.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Well done! +1....
        $endgroup$
        – Mark Viola
        Sep 5 '15 at 22:12














      7












      7








      7





      $begingroup$

      Note that
      $$int_0^cf(x),dx+int_0^{f(c)}f^{-1}(x),dx=cf(c)$$



      You can think of this as the area of the rectangle with $(0,0)$ for one corner and $(c,f(c))$ for the opposite corner.



      Without loss of generality, let $f(a)le b$. Then
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dx=af(a)+int_{f(a)}^bf^{-1}(x),dx$$



      Now since $f(x)$ is strictly increasing, we have $f^{-1}(x)>a$ for $x>f(a)$. Hence
      $$int_{f(a)}^bf^{-1}(x),dxge aleft(b-f(a)right)$$
      with equality if and only if $b=f(a)$.



      Putting this together, we get
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dxge af(a)+a(b-f(a))=ab$$
      with equality if and only if $b=f(a)$.






      share|cite|improve this answer











      $endgroup$



      Note that
      $$int_0^cf(x),dx+int_0^{f(c)}f^{-1}(x),dx=cf(c)$$



      You can think of this as the area of the rectangle with $(0,0)$ for one corner and $(c,f(c))$ for the opposite corner.



      Without loss of generality, let $f(a)le b$. Then
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dx=af(a)+int_{f(a)}^bf^{-1}(x),dx$$



      Now since $f(x)$ is strictly increasing, we have $f^{-1}(x)>a$ for $x>f(a)$. Hence
      $$int_{f(a)}^bf^{-1}(x),dxge aleft(b-f(a)right)$$
      with equality if and only if $b=f(a)$.



      Putting this together, we get
      $$int_0^af(x),dx+int_0^bf^{-1}(x),dxge af(a)+a(b-f(a))=ab$$
      with equality if and only if $b=f(a)$.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Sep 5 '15 at 22:12

























      answered Sep 5 '15 at 21:20









      Peter WoolfittPeter Woolfitt

      18.6k54480




      18.6k54480












      • $begingroup$
        Well done! +1....
        $endgroup$
        – Mark Viola
        Sep 5 '15 at 22:12


















      • $begingroup$
        Well done! +1....
        $endgroup$
        – Mark Viola
        Sep 5 '15 at 22:12
















      $begingroup$
      Well done! +1....
      $endgroup$
      – Mark Viola
      Sep 5 '15 at 22:12




      $begingroup$
      Well done! +1....
      $endgroup$
      – Mark Viola
      Sep 5 '15 at 22:12











      1












      $begingroup$

      As @Peter Woolfitt provide the solution, Here is my view



      Set $f(x)=y,x=varphi(y)$



      $varphi(f(x))=x$



      Set $displaystyle F(t)=int_0^af(x)dx+int_0^tvarphi(y)dy-at$



      take the derivative of this with respect to $F(t)$



      we have $F'(t)=varphi(t)-a$



      and by the conditions $varphi(0)=0$, $varphi(t)$ monotonic increasing.



      Set $F'(t)=0$, we got $varphi(t_0)=a$, and $t_0=varphi^{-1}(a)=f(a)$



      When $t in (0,t_0)$, $F(t)$ monotonic decreasing, $t in (t_0,+infty)$, $F(t)$ monotonic increasing



      $$
      F(t_0)=int_0^af(x)dx+int_0^{t_0}varphi(y)dy-at_0\
      $$



      $$
      F(t_0)=int_0^af(x)dx+int_0^{f(a)}varphi(y)dy-af(a)\
      $$



      change of variable
      $$
      F(t_0)=int_0^af(x)dx+int_0^{a}varphi(f(x))d(f(x))-af(a)\
      $$



      $$
      F(t_0)=int_0^af(x)dx+int_0^{a}xd(f(x))-af(a)\
      $$



      $$
      F(t_0)=int_0^af(x)dx+xf(x)Big|_0^a-int_0^{a}f(x)d(x)-af(a)=0\
      $$



      Finally, we got $F(t)geqslant 0$ when $t_0=f(a)=b$, $a=varphi(b)$, the equation is satisfied



      $$
      int_0^af(x)dx+int_0^bvarphi(y)dy=ab
      $$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        As @Peter Woolfitt provide the solution, Here is my view



        Set $f(x)=y,x=varphi(y)$



        $varphi(f(x))=x$



        Set $displaystyle F(t)=int_0^af(x)dx+int_0^tvarphi(y)dy-at$



        take the derivative of this with respect to $F(t)$



        we have $F'(t)=varphi(t)-a$



        and by the conditions $varphi(0)=0$, $varphi(t)$ monotonic increasing.



        Set $F'(t)=0$, we got $varphi(t_0)=a$, and $t_0=varphi^{-1}(a)=f(a)$



        When $t in (0,t_0)$, $F(t)$ monotonic decreasing, $t in (t_0,+infty)$, $F(t)$ monotonic increasing



        $$
        F(t_0)=int_0^af(x)dx+int_0^{t_0}varphi(y)dy-at_0\
        $$



        $$
        F(t_0)=int_0^af(x)dx+int_0^{f(a)}varphi(y)dy-af(a)\
        $$



        change of variable
        $$
        F(t_0)=int_0^af(x)dx+int_0^{a}varphi(f(x))d(f(x))-af(a)\
        $$



        $$
        F(t_0)=int_0^af(x)dx+int_0^{a}xd(f(x))-af(a)\
        $$



        $$
        F(t_0)=int_0^af(x)dx+xf(x)Big|_0^a-int_0^{a}f(x)d(x)-af(a)=0\
        $$



        Finally, we got $F(t)geqslant 0$ when $t_0=f(a)=b$, $a=varphi(b)$, the equation is satisfied



        $$
        int_0^af(x)dx+int_0^bvarphi(y)dy=ab
        $$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          As @Peter Woolfitt provide the solution, Here is my view



          Set $f(x)=y,x=varphi(y)$



          $varphi(f(x))=x$



          Set $displaystyle F(t)=int_0^af(x)dx+int_0^tvarphi(y)dy-at$



          take the derivative of this with respect to $F(t)$



          we have $F'(t)=varphi(t)-a$



          and by the conditions $varphi(0)=0$, $varphi(t)$ monotonic increasing.



          Set $F'(t)=0$, we got $varphi(t_0)=a$, and $t_0=varphi^{-1}(a)=f(a)$



          When $t in (0,t_0)$, $F(t)$ monotonic decreasing, $t in (t_0,+infty)$, $F(t)$ monotonic increasing



          $$
          F(t_0)=int_0^af(x)dx+int_0^{t_0}varphi(y)dy-at_0\
          $$



          $$
          F(t_0)=int_0^af(x)dx+int_0^{f(a)}varphi(y)dy-af(a)\
          $$



          change of variable
          $$
          F(t_0)=int_0^af(x)dx+int_0^{a}varphi(f(x))d(f(x))-af(a)\
          $$



          $$
          F(t_0)=int_0^af(x)dx+int_0^{a}xd(f(x))-af(a)\
          $$



          $$
          F(t_0)=int_0^af(x)dx+xf(x)Big|_0^a-int_0^{a}f(x)d(x)-af(a)=0\
          $$



          Finally, we got $F(t)geqslant 0$ when $t_0=f(a)=b$, $a=varphi(b)$, the equation is satisfied



          $$
          int_0^af(x)dx+int_0^bvarphi(y)dy=ab
          $$






          share|cite|improve this answer









          $endgroup$



          As @Peter Woolfitt provide the solution, Here is my view



          Set $f(x)=y,x=varphi(y)$



          $varphi(f(x))=x$



          Set $displaystyle F(t)=int_0^af(x)dx+int_0^tvarphi(y)dy-at$



          take the derivative of this with respect to $F(t)$



          we have $F'(t)=varphi(t)-a$



          and by the conditions $varphi(0)=0$, $varphi(t)$ monotonic increasing.



          Set $F'(t)=0$, we got $varphi(t_0)=a$, and $t_0=varphi^{-1}(a)=f(a)$



          When $t in (0,t_0)$, $F(t)$ monotonic decreasing, $t in (t_0,+infty)$, $F(t)$ monotonic increasing



          $$
          F(t_0)=int_0^af(x)dx+int_0^{t_0}varphi(y)dy-at_0\
          $$



          $$
          F(t_0)=int_0^af(x)dx+int_0^{f(a)}varphi(y)dy-af(a)\
          $$



          change of variable
          $$
          F(t_0)=int_0^af(x)dx+int_0^{a}varphi(f(x))d(f(x))-af(a)\
          $$



          $$
          F(t_0)=int_0^af(x)dx+int_0^{a}xd(f(x))-af(a)\
          $$



          $$
          F(t_0)=int_0^af(x)dx+xf(x)Big|_0^a-int_0^{a}f(x)d(x)-af(a)=0\
          $$



          Finally, we got $F(t)geqslant 0$ when $t_0=f(a)=b$, $a=varphi(b)$, the equation is satisfied



          $$
          int_0^af(x)dx+int_0^bvarphi(y)dy=ab
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 14 '18 at 0:45









          Jack throneJack throne

          184




          184























              0












              $begingroup$

              We remark that the integrals are well-defined by Theorem 6.9 of Rudin's Principles of Mathematical Analysis.




              Theorem 6.9 (Rudin). If $f$ is monotonic on $[a, b]$, and if $alpha$ is continuous on $[a, b]$, then $f in mathscr{R}(alpha)$. (We still assume, of course, that $alpha$ is monotonic.)




              By definition, there exists a sequence of partitions $(P_n)$ of $[0, a]$ such that$$U(P_n, f) to int_0^a f(x),dx$$and sequence of partitions $(Q_n)$ of $[0, b]$ such that$$L(Q_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Let $P_n' = P_n cap f^{-1}(Q_n)$, $tilde{P}_n = P_n' cap [0, a]$, $Q_n' = Q_n cap f(P_n)$, and $tilde{Q}_n = Q_n' cap [0, b]$. Then $U(tilde{P}_n, f) le U(P_n, f)$, $L(tilde{Q}_n, f^{-1}) ge L(Q_n, f^{-1})$ and so we have$$U(tilde{P}_n, f) to int_0^a f(x),dx,text{ }L(tilde{Q}_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Replace $P_n$ by $tilde{P}_n$ and $Q_n$ with $tilde{Q}_n$. Because $f$ is strictly increasing,$$U(P_n, f) = sum_{i=1}^p f(x_i)(x_i - x_{i-1}),$$where $P_n = {x_0, dots, x_p}$, and similarly,$$L(Q_n, f^{-1}) = sum_{j=1}^q f^{-1}(y_{j-1})(y_j - y_{j-1}),$$where $Q_n = {y_0, dots, y_q}$. Also,$$ab = left(sum_{i=1}^p (x_i - x_{i-1})right)left( sum_{j=1}^q(y_j - y_{j-1})right).$$Let $P_n' = {x_0, dots, x_p, dots, x_{p'}}$ and $Q_n' = {y_0, dots, y_q, dots, y_{q'}}$. Realizing that, we can write$$U(P_n, f) = sum_{i=1}^p sum_{y_j le f(x_i)} (y_j - y_{j-1})(x_i - x_{i-1}) = sum_{i=1}^p sum_{y_j le f(x_i)} (x_i - x_{i-1})(y_j - y_{j-1})$$and$$L(Q_n, f^{-1}) = sum_{j=1}^q sum_{x_i le f^{-1}(y_{j-1})}(x_i - x_{i-1})(y_j - y_{j-1}) = sum_{j=1}^q sum_{f(x_i) < y_j} (x_i - x_{i-1})(y_j - y_{j-1}),$$we obtain $ab le U(P_n, f) + L(Q_n, f^{-1})$ since the left-hand side involves summing over fewer terms. Taking limits gives the required identity.



              When $f(a) = b$, we obtain equality because the sums are equal. To see the converse, we use an argument like the one in Exercise 6.2 of Rudin's Principles of Mathematical Analysis.




              Exercise 6.2 (Rudin). Suppose $f ge 0$, $f$ is continuous on $[a, b]$, and $int_a^b f(x),dx = 0$. Then $f(x) = 0$ for all $x in [a, b]$. (See here for a solution.)




              If $f(a) > b$, find a neighborhood $N$ of which this is true; one of the sums in the above argument will consist of more terms and the extra contribution will not converge to zero as this contribution is giving $int_N (f(x) - b),dx > 0$. Similarly, if $f(a) < b$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                We remark that the integrals are well-defined by Theorem 6.9 of Rudin's Principles of Mathematical Analysis.




                Theorem 6.9 (Rudin). If $f$ is monotonic on $[a, b]$, and if $alpha$ is continuous on $[a, b]$, then $f in mathscr{R}(alpha)$. (We still assume, of course, that $alpha$ is monotonic.)




                By definition, there exists a sequence of partitions $(P_n)$ of $[0, a]$ such that$$U(P_n, f) to int_0^a f(x),dx$$and sequence of partitions $(Q_n)$ of $[0, b]$ such that$$L(Q_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Let $P_n' = P_n cap f^{-1}(Q_n)$, $tilde{P}_n = P_n' cap [0, a]$, $Q_n' = Q_n cap f(P_n)$, and $tilde{Q}_n = Q_n' cap [0, b]$. Then $U(tilde{P}_n, f) le U(P_n, f)$, $L(tilde{Q}_n, f^{-1}) ge L(Q_n, f^{-1})$ and so we have$$U(tilde{P}_n, f) to int_0^a f(x),dx,text{ }L(tilde{Q}_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Replace $P_n$ by $tilde{P}_n$ and $Q_n$ with $tilde{Q}_n$. Because $f$ is strictly increasing,$$U(P_n, f) = sum_{i=1}^p f(x_i)(x_i - x_{i-1}),$$where $P_n = {x_0, dots, x_p}$, and similarly,$$L(Q_n, f^{-1}) = sum_{j=1}^q f^{-1}(y_{j-1})(y_j - y_{j-1}),$$where $Q_n = {y_0, dots, y_q}$. Also,$$ab = left(sum_{i=1}^p (x_i - x_{i-1})right)left( sum_{j=1}^q(y_j - y_{j-1})right).$$Let $P_n' = {x_0, dots, x_p, dots, x_{p'}}$ and $Q_n' = {y_0, dots, y_q, dots, y_{q'}}$. Realizing that, we can write$$U(P_n, f) = sum_{i=1}^p sum_{y_j le f(x_i)} (y_j - y_{j-1})(x_i - x_{i-1}) = sum_{i=1}^p sum_{y_j le f(x_i)} (x_i - x_{i-1})(y_j - y_{j-1})$$and$$L(Q_n, f^{-1}) = sum_{j=1}^q sum_{x_i le f^{-1}(y_{j-1})}(x_i - x_{i-1})(y_j - y_{j-1}) = sum_{j=1}^q sum_{f(x_i) < y_j} (x_i - x_{i-1})(y_j - y_{j-1}),$$we obtain $ab le U(P_n, f) + L(Q_n, f^{-1})$ since the left-hand side involves summing over fewer terms. Taking limits gives the required identity.



                When $f(a) = b$, we obtain equality because the sums are equal. To see the converse, we use an argument like the one in Exercise 6.2 of Rudin's Principles of Mathematical Analysis.




                Exercise 6.2 (Rudin). Suppose $f ge 0$, $f$ is continuous on $[a, b]$, and $int_a^b f(x),dx = 0$. Then $f(x) = 0$ for all $x in [a, b]$. (See here for a solution.)




                If $f(a) > b$, find a neighborhood $N$ of which this is true; one of the sums in the above argument will consist of more terms and the extra contribution will not converge to zero as this contribution is giving $int_N (f(x) - b),dx > 0$. Similarly, if $f(a) < b$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  We remark that the integrals are well-defined by Theorem 6.9 of Rudin's Principles of Mathematical Analysis.




                  Theorem 6.9 (Rudin). If $f$ is monotonic on $[a, b]$, and if $alpha$ is continuous on $[a, b]$, then $f in mathscr{R}(alpha)$. (We still assume, of course, that $alpha$ is monotonic.)




                  By definition, there exists a sequence of partitions $(P_n)$ of $[0, a]$ such that$$U(P_n, f) to int_0^a f(x),dx$$and sequence of partitions $(Q_n)$ of $[0, b]$ such that$$L(Q_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Let $P_n' = P_n cap f^{-1}(Q_n)$, $tilde{P}_n = P_n' cap [0, a]$, $Q_n' = Q_n cap f(P_n)$, and $tilde{Q}_n = Q_n' cap [0, b]$. Then $U(tilde{P}_n, f) le U(P_n, f)$, $L(tilde{Q}_n, f^{-1}) ge L(Q_n, f^{-1})$ and so we have$$U(tilde{P}_n, f) to int_0^a f(x),dx,text{ }L(tilde{Q}_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Replace $P_n$ by $tilde{P}_n$ and $Q_n$ with $tilde{Q}_n$. Because $f$ is strictly increasing,$$U(P_n, f) = sum_{i=1}^p f(x_i)(x_i - x_{i-1}),$$where $P_n = {x_0, dots, x_p}$, and similarly,$$L(Q_n, f^{-1}) = sum_{j=1}^q f^{-1}(y_{j-1})(y_j - y_{j-1}),$$where $Q_n = {y_0, dots, y_q}$. Also,$$ab = left(sum_{i=1}^p (x_i - x_{i-1})right)left( sum_{j=1}^q(y_j - y_{j-1})right).$$Let $P_n' = {x_0, dots, x_p, dots, x_{p'}}$ and $Q_n' = {y_0, dots, y_q, dots, y_{q'}}$. Realizing that, we can write$$U(P_n, f) = sum_{i=1}^p sum_{y_j le f(x_i)} (y_j - y_{j-1})(x_i - x_{i-1}) = sum_{i=1}^p sum_{y_j le f(x_i)} (x_i - x_{i-1})(y_j - y_{j-1})$$and$$L(Q_n, f^{-1}) = sum_{j=1}^q sum_{x_i le f^{-1}(y_{j-1})}(x_i - x_{i-1})(y_j - y_{j-1}) = sum_{j=1}^q sum_{f(x_i) < y_j} (x_i - x_{i-1})(y_j - y_{j-1}),$$we obtain $ab le U(P_n, f) + L(Q_n, f^{-1})$ since the left-hand side involves summing over fewer terms. Taking limits gives the required identity.



                  When $f(a) = b$, we obtain equality because the sums are equal. To see the converse, we use an argument like the one in Exercise 6.2 of Rudin's Principles of Mathematical Analysis.




                  Exercise 6.2 (Rudin). Suppose $f ge 0$, $f$ is continuous on $[a, b]$, and $int_a^b f(x),dx = 0$. Then $f(x) = 0$ for all $x in [a, b]$. (See here for a solution.)




                  If $f(a) > b$, find a neighborhood $N$ of which this is true; one of the sums in the above argument will consist of more terms and the extra contribution will not converge to zero as this contribution is giving $int_N (f(x) - b),dx > 0$. Similarly, if $f(a) < b$.






                  share|cite|improve this answer











                  $endgroup$



                  We remark that the integrals are well-defined by Theorem 6.9 of Rudin's Principles of Mathematical Analysis.




                  Theorem 6.9 (Rudin). If $f$ is monotonic on $[a, b]$, and if $alpha$ is continuous on $[a, b]$, then $f in mathscr{R}(alpha)$. (We still assume, of course, that $alpha$ is monotonic.)




                  By definition, there exists a sequence of partitions $(P_n)$ of $[0, a]$ such that$$U(P_n, f) to int_0^a f(x),dx$$and sequence of partitions $(Q_n)$ of $[0, b]$ such that$$L(Q_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Let $P_n' = P_n cap f^{-1}(Q_n)$, $tilde{P}_n = P_n' cap [0, a]$, $Q_n' = Q_n cap f(P_n)$, and $tilde{Q}_n = Q_n' cap [0, b]$. Then $U(tilde{P}_n, f) le U(P_n, f)$, $L(tilde{Q}_n, f^{-1}) ge L(Q_n, f^{-1})$ and so we have$$U(tilde{P}_n, f) to int_0^a f(x),dx,text{ }L(tilde{Q}_n, f^{-1}) to int_0^b f^{-1}(x),dx.$$Replace $P_n$ by $tilde{P}_n$ and $Q_n$ with $tilde{Q}_n$. Because $f$ is strictly increasing,$$U(P_n, f) = sum_{i=1}^p f(x_i)(x_i - x_{i-1}),$$where $P_n = {x_0, dots, x_p}$, and similarly,$$L(Q_n, f^{-1}) = sum_{j=1}^q f^{-1}(y_{j-1})(y_j - y_{j-1}),$$where $Q_n = {y_0, dots, y_q}$. Also,$$ab = left(sum_{i=1}^p (x_i - x_{i-1})right)left( sum_{j=1}^q(y_j - y_{j-1})right).$$Let $P_n' = {x_0, dots, x_p, dots, x_{p'}}$ and $Q_n' = {y_0, dots, y_q, dots, y_{q'}}$. Realizing that, we can write$$U(P_n, f) = sum_{i=1}^p sum_{y_j le f(x_i)} (y_j - y_{j-1})(x_i - x_{i-1}) = sum_{i=1}^p sum_{y_j le f(x_i)} (x_i - x_{i-1})(y_j - y_{j-1})$$and$$L(Q_n, f^{-1}) = sum_{j=1}^q sum_{x_i le f^{-1}(y_{j-1})}(x_i - x_{i-1})(y_j - y_{j-1}) = sum_{j=1}^q sum_{f(x_i) < y_j} (x_i - x_{i-1})(y_j - y_{j-1}),$$we obtain $ab le U(P_n, f) + L(Q_n, f^{-1})$ since the left-hand side involves summing over fewer terms. Taking limits gives the required identity.



                  When $f(a) = b$, we obtain equality because the sums are equal. To see the converse, we use an argument like the one in Exercise 6.2 of Rudin's Principles of Mathematical Analysis.




                  Exercise 6.2 (Rudin). Suppose $f ge 0$, $f$ is continuous on $[a, b]$, and $int_a^b f(x),dx = 0$. Then $f(x) = 0$ for all $x in [a, b]$. (See here for a solution.)




                  If $f(a) > b$, find a neighborhood $N$ of which this is true; one of the sums in the above argument will consist of more terms and the extra contribution will not converge to zero as this contribution is giving $int_N (f(x) - b),dx > 0$. Similarly, if $f(a) < b$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Sep 6 '15 at 18:10

























                  answered Sep 6 '15 at 4:27







                  user268197





































                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1423492%2fshow-int-0a-fx-dx-int-0b-f-1x-dx-ge-ab-for-strictly-increasing%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei