Finding $p$ such that $sumlimits_{n=1}^infty n(1+n^2)^p$ converges. Check my work.












3












$begingroup$



Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$

Find the values of $p$, such that the series is convergent.




To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,



begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}




  • If $p=1$, the integral is divergent,


  • If $p>-1$, the integral is divergent,


  • If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,




So, I conclude the series is convergent while $p<-1$.



This answer is correct or incorrect?











share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Yes, it is correct
    $endgroup$
    – caverac
    Dec 14 '18 at 2:26






  • 1




    $begingroup$
    Well done .....
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:26










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34
















3












$begingroup$



Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$

Find the values of $p$, such that the series is convergent.




To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,



begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}




  • If $p=1$, the integral is divergent,


  • If $p>-1$, the integral is divergent,


  • If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,




So, I conclude the series is convergent while $p<-1$.



This answer is correct or incorrect?











share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Yes, it is correct
    $endgroup$
    – caverac
    Dec 14 '18 at 2:26






  • 1




    $begingroup$
    Well done .....
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:26










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34














3












3








3





$begingroup$



Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$

Find the values of $p$, such that the series is convergent.




To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,



begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}




  • If $p=1$, the integral is divergent,


  • If $p>-1$, the integral is divergent,


  • If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,




So, I conclude the series is convergent while $p<-1$.



This answer is correct or incorrect?











share|cite|improve this question











$endgroup$





Given series
$$
sumlimits_{n=1}^infty n(1+n^2)^p
$$

Find the values of $p$, such that the series is convergent.




To find $p$, I use integral test,
assume $f(x)=x(1+x^2)^p$,



begin{eqnarray}
intlimits_1^infty x(1+x^2)^pdx &=& limlimits_{btoinfty} intlimits_1^b x(1+x^2)^pdx\
&=& limlimits_{btoinfty} left[dfrac{1}{2(p+1)}left((1+b^2)^{p+1}-2^{p+1}right)right]
end{eqnarray}




  • If $p=1$, the integral is divergent,


  • If $p>-1$, the integral is divergent,


  • If $p<-1$, the integral is convergent to $-dfrac{1}{p+1}2^p$,




So, I conclude the series is convergent while $p<-1$.



This answer is correct or incorrect?








sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 2:57









Blue

48.3k870153




48.3k870153










asked Dec 14 '18 at 2:20









Ongky Denny WijayaOngky Denny Wijaya

1417




1417








  • 1




    $begingroup$
    Yes, it is correct
    $endgroup$
    – caverac
    Dec 14 '18 at 2:26






  • 1




    $begingroup$
    Well done .....
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:26










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34














  • 1




    $begingroup$
    Yes, it is correct
    $endgroup$
    – caverac
    Dec 14 '18 at 2:26






  • 1




    $begingroup$
    Well done .....
    $endgroup$
    – Mark Viola
    Dec 14 '18 at 2:26










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34










  • $begingroup$
    OK, thank you so much
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 2:34








1




1




$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26




$begingroup$
Yes, it is correct
$endgroup$
– caverac
Dec 14 '18 at 2:26




1




1




$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26




$begingroup$
Well done .....
$endgroup$
– Mark Viola
Dec 14 '18 at 2:26












$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34




$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34












$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34




$begingroup$
OK, thank you so much
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 2:34










1 Answer
1






active

oldest

votes


















2












$begingroup$

Alternative:



If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$



$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$



Hence it diverges.



If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$



$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$



Hence, by $p$-series and comparison test, it converges.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much Siong Thye Goh
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 3:29











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038840%2ffinding-p-such-that-sum-limits-n-1-infty-n1n2p-converges-check-my%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Alternative:



If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$



$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$



Hence it diverges.



If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$



$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$



Hence, by $p$-series and comparison test, it converges.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much Siong Thye Goh
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 3:29
















2












$begingroup$

Alternative:



If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$



$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$



Hence it diverges.



If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$



$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$



Hence, by $p$-series and comparison test, it converges.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much Siong Thye Goh
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 3:29














2












2








2





$begingroup$

Alternative:



If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$



$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$



Hence it diverges.



If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$



$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$



Hence, by $p$-series and comparison test, it converges.






share|cite|improve this answer









$endgroup$



Alternative:



If $pge -1$, then $(1+n^2)^p ge (1+n^2)^{-1}$



$$sum_{n=1}^infty n(1+n^2)^p gesum_{n=1}^infty frac{n}{1+n^2} ge sum_{n=1}^infty frac{n}{2n^2}= sum_{n=1}^infty frac{1}{2n}$$



Hence it diverges.



If $p<-1$, then $-p > 1$, $(1+n^2)^{-p} ge (n^2)^{-p}$. Also, we have $-2p-1>2-1=1$



$$sum_{n=1}^infty frac{n}{(1+n^2)^{-p}} le sum_{n=1}^infty frac{n}{n^{-2p}}= sum_{n=1}^infty frac{1}{n^{-2p-1}}$$



Hence, by $p$-series and comparison test, it converges.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 14 '18 at 2:47









Siong Thye GohSiong Thye Goh

101k1466118




101k1466118












  • $begingroup$
    Thank you so much Siong Thye Goh
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 3:29


















  • $begingroup$
    Thank you so much Siong Thye Goh
    $endgroup$
    – Ongky Denny Wijaya
    Dec 14 '18 at 3:29
















$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29




$begingroup$
Thank you so much Siong Thye Goh
$endgroup$
– Ongky Denny Wijaya
Dec 14 '18 at 3:29


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038840%2ffinding-p-such-that-sum-limits-n-1-infty-n1n2p-converges-check-my%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Quarter-circle Tiles

build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

Mont Emei