Finding the harmonic conjugate of $T(x,y)= e^{-y} sin x$?
$begingroup$
I try the following two method on finding the harmonic conjugate of $T(x,y)= e^{-y} sin x$ :
Method 1 : by a method of the book Complex Variables and Applications by Brown and Churchill, Chapter 9 Section 104, $$v(x,y) = int_{(0,0)}^{(x,y)} -u_t(s, t) ds + u_s(s, t) dt = int_{(0,0)}^{(x,y)} e^{-y} sin x dx + e^{-y} cos x dy = -e^{-y} cos x - e^{-y} cos x +C = -2e^{-y} cos x +C$$ which $C$ can be chosen to be zero.
Method 1 : Since $T(x,y)= e^{-y} sin x$ and its harmonic conjugate must be the real and imaginary parts of an analytic function, respectively, so it can be $f(z)=-ie^{iz} =e^{-y} sin x - ie^{-y} cos x.$
So why there is an extra $2$ coefficient in Method 1? Where did I do wrong?
Added. Probably the Method 1 is wrong. It comes from if $F_x(x,y) = P(x,y), F_y(x,y) = Q(x,y)$ holds in here. For example the method gives the correct answer for $u=xy$ but again it give a wrong answer for $u=x^3-3xy^2:$ that is $v=6x^2y-y^3$; but the correct one is $v=3x^2y-y^3$. But it looks impossible such a famous book to make a mistake. (???)
complex-analysis proof-verification examples-counterexamples
$endgroup$
add a comment |
$begingroup$
I try the following two method on finding the harmonic conjugate of $T(x,y)= e^{-y} sin x$ :
Method 1 : by a method of the book Complex Variables and Applications by Brown and Churchill, Chapter 9 Section 104, $$v(x,y) = int_{(0,0)}^{(x,y)} -u_t(s, t) ds + u_s(s, t) dt = int_{(0,0)}^{(x,y)} e^{-y} sin x dx + e^{-y} cos x dy = -e^{-y} cos x - e^{-y} cos x +C = -2e^{-y} cos x +C$$ which $C$ can be chosen to be zero.
Method 1 : Since $T(x,y)= e^{-y} sin x$ and its harmonic conjugate must be the real and imaginary parts of an analytic function, respectively, so it can be $f(z)=-ie^{iz} =e^{-y} sin x - ie^{-y} cos x.$
So why there is an extra $2$ coefficient in Method 1? Where did I do wrong?
Added. Probably the Method 1 is wrong. It comes from if $F_x(x,y) = P(x,y), F_y(x,y) = Q(x,y)$ holds in here. For example the method gives the correct answer for $u=xy$ but again it give a wrong answer for $u=x^3-3xy^2:$ that is $v=6x^2y-y^3$; but the correct one is $v=3x^2y-y^3$. But it looks impossible such a famous book to make a mistake. (???)
complex-analysis proof-verification examples-counterexamples
$endgroup$
add a comment |
$begingroup$
I try the following two method on finding the harmonic conjugate of $T(x,y)= e^{-y} sin x$ :
Method 1 : by a method of the book Complex Variables and Applications by Brown and Churchill, Chapter 9 Section 104, $$v(x,y) = int_{(0,0)}^{(x,y)} -u_t(s, t) ds + u_s(s, t) dt = int_{(0,0)}^{(x,y)} e^{-y} sin x dx + e^{-y} cos x dy = -e^{-y} cos x - e^{-y} cos x +C = -2e^{-y} cos x +C$$ which $C$ can be chosen to be zero.
Method 1 : Since $T(x,y)= e^{-y} sin x$ and its harmonic conjugate must be the real and imaginary parts of an analytic function, respectively, so it can be $f(z)=-ie^{iz} =e^{-y} sin x - ie^{-y} cos x.$
So why there is an extra $2$ coefficient in Method 1? Where did I do wrong?
Added. Probably the Method 1 is wrong. It comes from if $F_x(x,y) = P(x,y), F_y(x,y) = Q(x,y)$ holds in here. For example the method gives the correct answer for $u=xy$ but again it give a wrong answer for $u=x^3-3xy^2:$ that is $v=6x^2y-y^3$; but the correct one is $v=3x^2y-y^3$. But it looks impossible such a famous book to make a mistake. (???)
complex-analysis proof-verification examples-counterexamples
$endgroup$
I try the following two method on finding the harmonic conjugate of $T(x,y)= e^{-y} sin x$ :
Method 1 : by a method of the book Complex Variables and Applications by Brown and Churchill, Chapter 9 Section 104, $$v(x,y) = int_{(0,0)}^{(x,y)} -u_t(s, t) ds + u_s(s, t) dt = int_{(0,0)}^{(x,y)} e^{-y} sin x dx + e^{-y} cos x dy = -e^{-y} cos x - e^{-y} cos x +C = -2e^{-y} cos x +C$$ which $C$ can be chosen to be zero.
Method 1 : Since $T(x,y)= e^{-y} sin x$ and its harmonic conjugate must be the real and imaginary parts of an analytic function, respectively, so it can be $f(z)=-ie^{iz} =e^{-y} sin x - ie^{-y} cos x.$
So why there is an extra $2$ coefficient in Method 1? Where did I do wrong?
Added. Probably the Method 1 is wrong. It comes from if $F_x(x,y) = P(x,y), F_y(x,y) = Q(x,y)$ holds in here. For example the method gives the correct answer for $u=xy$ but again it give a wrong answer for $u=x^3-3xy^2:$ that is $v=6x^2y-y^3$; but the correct one is $v=3x^2y-y^3$. But it looks impossible such a famous book to make a mistake. (???)
complex-analysis proof-verification examples-counterexamples
complex-analysis proof-verification examples-counterexamples
edited Dec 18 '18 at 2:21
72D
asked Dec 14 '18 at 3:44
72D72D
514116
514116
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You did not compute the line integral correctly.
For $u(x,y)=e^{-y}sin x$, we have $u_{,1}(x,y)=dfrac{partial u(x,y)}{partial x}=e^{-y}cos x$ and $u_{,2}(x,y)=dfrac{partial u(x,y)}{partial y}=-e^{-y}sin x$. Hence taking the straight-line path $gammacolontauin[0,1]mapsto(xtau,ytau)$ joining $(0,0)$ to $(x,y)$, we have
begin{align*}
&int_{(0,0)}^{(x,y)} (-u_{,2},u_{,1})(s, t)cdot(mathrm{d}s,mathrm{d}t)\
&=int_0^1 (-u_{,2},u_{,1})(gamma(tau))cdotdotgamma(tau),mathrm{d}tau\
&=int_0^1 (-u_{,2},u_{,1})(xtau,ytau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (e^{-ytau}sin (xtau),e^{-ytau}cos xtau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (xe^{-ytau}sin (xtau)+ye^{-ytau}cos xtau),mathrm{d}tau\
&=Big[-e^{-ytau}cos(xtau)Big]_{tau=0}^{tau=1}=1-e^{-y}cos x.
end{align*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038913%2ffinding-the-harmonic-conjugate-of-tx-y-e-y-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You did not compute the line integral correctly.
For $u(x,y)=e^{-y}sin x$, we have $u_{,1}(x,y)=dfrac{partial u(x,y)}{partial x}=e^{-y}cos x$ and $u_{,2}(x,y)=dfrac{partial u(x,y)}{partial y}=-e^{-y}sin x$. Hence taking the straight-line path $gammacolontauin[0,1]mapsto(xtau,ytau)$ joining $(0,0)$ to $(x,y)$, we have
begin{align*}
&int_{(0,0)}^{(x,y)} (-u_{,2},u_{,1})(s, t)cdot(mathrm{d}s,mathrm{d}t)\
&=int_0^1 (-u_{,2},u_{,1})(gamma(tau))cdotdotgamma(tau),mathrm{d}tau\
&=int_0^1 (-u_{,2},u_{,1})(xtau,ytau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (e^{-ytau}sin (xtau),e^{-ytau}cos xtau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (xe^{-ytau}sin (xtau)+ye^{-ytau}cos xtau),mathrm{d}tau\
&=Big[-e^{-ytau}cos(xtau)Big]_{tau=0}^{tau=1}=1-e^{-y}cos x.
end{align*}
$endgroup$
add a comment |
$begingroup$
You did not compute the line integral correctly.
For $u(x,y)=e^{-y}sin x$, we have $u_{,1}(x,y)=dfrac{partial u(x,y)}{partial x}=e^{-y}cos x$ and $u_{,2}(x,y)=dfrac{partial u(x,y)}{partial y}=-e^{-y}sin x$. Hence taking the straight-line path $gammacolontauin[0,1]mapsto(xtau,ytau)$ joining $(0,0)$ to $(x,y)$, we have
begin{align*}
&int_{(0,0)}^{(x,y)} (-u_{,2},u_{,1})(s, t)cdot(mathrm{d}s,mathrm{d}t)\
&=int_0^1 (-u_{,2},u_{,1})(gamma(tau))cdotdotgamma(tau),mathrm{d}tau\
&=int_0^1 (-u_{,2},u_{,1})(xtau,ytau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (e^{-ytau}sin (xtau),e^{-ytau}cos xtau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (xe^{-ytau}sin (xtau)+ye^{-ytau}cos xtau),mathrm{d}tau\
&=Big[-e^{-ytau}cos(xtau)Big]_{tau=0}^{tau=1}=1-e^{-y}cos x.
end{align*}
$endgroup$
add a comment |
$begingroup$
You did not compute the line integral correctly.
For $u(x,y)=e^{-y}sin x$, we have $u_{,1}(x,y)=dfrac{partial u(x,y)}{partial x}=e^{-y}cos x$ and $u_{,2}(x,y)=dfrac{partial u(x,y)}{partial y}=-e^{-y}sin x$. Hence taking the straight-line path $gammacolontauin[0,1]mapsto(xtau,ytau)$ joining $(0,0)$ to $(x,y)$, we have
begin{align*}
&int_{(0,0)}^{(x,y)} (-u_{,2},u_{,1})(s, t)cdot(mathrm{d}s,mathrm{d}t)\
&=int_0^1 (-u_{,2},u_{,1})(gamma(tau))cdotdotgamma(tau),mathrm{d}tau\
&=int_0^1 (-u_{,2},u_{,1})(xtau,ytau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (e^{-ytau}sin (xtau),e^{-ytau}cos xtau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (xe^{-ytau}sin (xtau)+ye^{-ytau}cos xtau),mathrm{d}tau\
&=Big[-e^{-ytau}cos(xtau)Big]_{tau=0}^{tau=1}=1-e^{-y}cos x.
end{align*}
$endgroup$
You did not compute the line integral correctly.
For $u(x,y)=e^{-y}sin x$, we have $u_{,1}(x,y)=dfrac{partial u(x,y)}{partial x}=e^{-y}cos x$ and $u_{,2}(x,y)=dfrac{partial u(x,y)}{partial y}=-e^{-y}sin x$. Hence taking the straight-line path $gammacolontauin[0,1]mapsto(xtau,ytau)$ joining $(0,0)$ to $(x,y)$, we have
begin{align*}
&int_{(0,0)}^{(x,y)} (-u_{,2},u_{,1})(s, t)cdot(mathrm{d}s,mathrm{d}t)\
&=int_0^1 (-u_{,2},u_{,1})(gamma(tau))cdotdotgamma(tau),mathrm{d}tau\
&=int_0^1 (-u_{,2},u_{,1})(xtau,ytau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (e^{-ytau}sin (xtau),e^{-ytau}cos xtau)cdotdot(x,y),mathrm{d}tau\
&=int_0^1 (xe^{-ytau}sin (xtau)+ye^{-ytau}cos xtau),mathrm{d}tau\
&=Big[-e^{-ytau}cos(xtau)Big]_{tau=0}^{tau=1}=1-e^{-y}cos x.
end{align*}
answered Dec 18 '18 at 7:41
user10354138user10354138
7,4322925
7,4322925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038913%2ffinding-the-harmonic-conjugate-of-tx-y-e-y-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown