Integral $int_0^{pi} frac{cos(2018x)}{5-4cos{x}}dx$
$begingroup$
I wish to evaluate $$I(2018)=int_{0}^{pi}frac{cos(2018x)}{5-4cos x} dx$$ Considering $$X=I(k)+iJ(k)=int_{-pi}^{pi}frac{cos{kx}}{5-4cos x} dx +iint_{-pi}^{pi}frac{sin{kx}}{5-4cos x} dx=int_{-pi}^{pi}frac{e^{ikx}}{5-4cos x} dx$$ let us substitute $$e^{ix}=zrightarrow dx=frac{dz}{iz} , ,|z|=1$$ Due to Euler's formula we can rewrite $$cos x=frac{z^2+1}{2z}$$ $$X=oint_{|z|=1} frac{z^k}{5-4frac{z^2+1}{2z}}frac{dz}{iz}=frac{1}{i}oint_{|z|=1} frac{z^k}{-2z^2+5z-2}dz$$ $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)=-frac{1}{2}(2z-4)(2z-1)=-2(z-2)(z-frac{1}{2})$$ Now let us notice that in our contour $|z|=1,$ only the pole $z_2=frac{1}{2}$ is found. Thus the integral we seek to evaluate is $$frac{1}{i} cdot 2pi i , text{Res} (f(z),z_2)$$ where $f(z)=frac{z^k}{-2(z-2)(z-frac{1}{2})}$ $$X=2pi lim_{zto z_2} (z-z_2)frac{z^k}{-2(z-2)(z-z_2)}=frac{2}{3}pi frac{1}{2^k}$$ therefore $$I(k)=Re (X) =frac{2pi}{3}frac{1}{2^k}$$ And $$int_{0}^{pi}frac{cos(2018 x)}{5-4cos x} dx=frac{pi}{3}cdotfrac{1}{2^{2018}}.$$ Now someone told me that the answer is $0$ and I am wrong (also wolfram gives $0$ as an answer). Could you please clarify? Or maybe give another solution to this integral if it's $0$ or another answer?
integration proof-verification complex-integration
$endgroup$
add a comment |
$begingroup$
I wish to evaluate $$I(2018)=int_{0}^{pi}frac{cos(2018x)}{5-4cos x} dx$$ Considering $$X=I(k)+iJ(k)=int_{-pi}^{pi}frac{cos{kx}}{5-4cos x} dx +iint_{-pi}^{pi}frac{sin{kx}}{5-4cos x} dx=int_{-pi}^{pi}frac{e^{ikx}}{5-4cos x} dx$$ let us substitute $$e^{ix}=zrightarrow dx=frac{dz}{iz} , ,|z|=1$$ Due to Euler's formula we can rewrite $$cos x=frac{z^2+1}{2z}$$ $$X=oint_{|z|=1} frac{z^k}{5-4frac{z^2+1}{2z}}frac{dz}{iz}=frac{1}{i}oint_{|z|=1} frac{z^k}{-2z^2+5z-2}dz$$ $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)=-frac{1}{2}(2z-4)(2z-1)=-2(z-2)(z-frac{1}{2})$$ Now let us notice that in our contour $|z|=1,$ only the pole $z_2=frac{1}{2}$ is found. Thus the integral we seek to evaluate is $$frac{1}{i} cdot 2pi i , text{Res} (f(z),z_2)$$ where $f(z)=frac{z^k}{-2(z-2)(z-frac{1}{2})}$ $$X=2pi lim_{zto z_2} (z-z_2)frac{z^k}{-2(z-2)(z-z_2)}=frac{2}{3}pi frac{1}{2^k}$$ therefore $$I(k)=Re (X) =frac{2pi}{3}frac{1}{2^k}$$ And $$int_{0}^{pi}frac{cos(2018 x)}{5-4cos x} dx=frac{pi}{3}cdotfrac{1}{2^{2018}}.$$ Now someone told me that the answer is $0$ and I am wrong (also wolfram gives $0$ as an answer). Could you please clarify? Or maybe give another solution to this integral if it's $0$ or another answer?
integration proof-verification complex-integration
$endgroup$
1
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
3
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
2
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
2
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09
add a comment |
$begingroup$
I wish to evaluate $$I(2018)=int_{0}^{pi}frac{cos(2018x)}{5-4cos x} dx$$ Considering $$X=I(k)+iJ(k)=int_{-pi}^{pi}frac{cos{kx}}{5-4cos x} dx +iint_{-pi}^{pi}frac{sin{kx}}{5-4cos x} dx=int_{-pi}^{pi}frac{e^{ikx}}{5-4cos x} dx$$ let us substitute $$e^{ix}=zrightarrow dx=frac{dz}{iz} , ,|z|=1$$ Due to Euler's formula we can rewrite $$cos x=frac{z^2+1}{2z}$$ $$X=oint_{|z|=1} frac{z^k}{5-4frac{z^2+1}{2z}}frac{dz}{iz}=frac{1}{i}oint_{|z|=1} frac{z^k}{-2z^2+5z-2}dz$$ $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)=-frac{1}{2}(2z-4)(2z-1)=-2(z-2)(z-frac{1}{2})$$ Now let us notice that in our contour $|z|=1,$ only the pole $z_2=frac{1}{2}$ is found. Thus the integral we seek to evaluate is $$frac{1}{i} cdot 2pi i , text{Res} (f(z),z_2)$$ where $f(z)=frac{z^k}{-2(z-2)(z-frac{1}{2})}$ $$X=2pi lim_{zto z_2} (z-z_2)frac{z^k}{-2(z-2)(z-z_2)}=frac{2}{3}pi frac{1}{2^k}$$ therefore $$I(k)=Re (X) =frac{2pi}{3}frac{1}{2^k}$$ And $$int_{0}^{pi}frac{cos(2018 x)}{5-4cos x} dx=frac{pi}{3}cdotfrac{1}{2^{2018}}.$$ Now someone told me that the answer is $0$ and I am wrong (also wolfram gives $0$ as an answer). Could you please clarify? Or maybe give another solution to this integral if it's $0$ or another answer?
integration proof-verification complex-integration
$endgroup$
I wish to evaluate $$I(2018)=int_{0}^{pi}frac{cos(2018x)}{5-4cos x} dx$$ Considering $$X=I(k)+iJ(k)=int_{-pi}^{pi}frac{cos{kx}}{5-4cos x} dx +iint_{-pi}^{pi}frac{sin{kx}}{5-4cos x} dx=int_{-pi}^{pi}frac{e^{ikx}}{5-4cos x} dx$$ let us substitute $$e^{ix}=zrightarrow dx=frac{dz}{iz} , ,|z|=1$$ Due to Euler's formula we can rewrite $$cos x=frac{z^2+1}{2z}$$ $$X=oint_{|z|=1} frac{z^k}{5-4frac{z^2+1}{2z}}frac{dz}{iz}=frac{1}{i}oint_{|z|=1} frac{z^k}{-2z^2+5z-2}dz$$ $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)=-frac{1}{2}(2z-4)(2z-1)=-2(z-2)(z-frac{1}{2})$$ Now let us notice that in our contour $|z|=1,$ only the pole $z_2=frac{1}{2}$ is found. Thus the integral we seek to evaluate is $$frac{1}{i} cdot 2pi i , text{Res} (f(z),z_2)$$ where $f(z)=frac{z^k}{-2(z-2)(z-frac{1}{2})}$ $$X=2pi lim_{zto z_2} (z-z_2)frac{z^k}{-2(z-2)(z-z_2)}=frac{2}{3}pi frac{1}{2^k}$$ therefore $$I(k)=Re (X) =frac{2pi}{3}frac{1}{2^k}$$ And $$int_{0}^{pi}frac{cos(2018 x)}{5-4cos x} dx=frac{pi}{3}cdotfrac{1}{2^{2018}}.$$ Now someone told me that the answer is $0$ and I am wrong (also wolfram gives $0$ as an answer). Could you please clarify? Or maybe give another solution to this integral if it's $0$ or another answer?
integration proof-verification complex-integration
integration proof-verification complex-integration
edited Dec 12 '18 at 0:19
Zacky
asked Jun 15 '18 at 7:50
ZackyZacky
6,2951858
6,2951858
1
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
3
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
2
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
2
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09
add a comment |
1
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
3
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
2
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
2
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09
1
1
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
3
3
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
2
2
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
2
2
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You are correct! This is an elementary approach without complex analysis.
Since $$cos((n+1)x)+cos((n-1)x)=2cos(nx)cos(x)$$ then for $ngeq 1$, we have the linear recurrence
$$begin{align}
I(n-1)+I(n+1)&=int_{0}^{pi}frac{2cos(nx)cos(x)}{5-4cos(x)} dx\
&=
-frac{1}{2}int_{0}^{pi}frac{cos(nx)(-5+5-4cos(x))}{5-4cos(x)} dx\
&=
frac{5}{2}I(n)-frac{1}{2}int_{0}^{pi}cos(nx) dx=frac{5}{2}I(n).
end{align}$$
Then
$$I(n)=A2^n+frac{B}{2^n}$$
for some constants $A$ and $B$. Since $I(n)$ is bounded it follows that $A=0$ and
$$I(n)=frac{I(0)}{2^n}=frac{1}{2^n}int_{0}^{pi}frac{dx}{5-4cos(x)} =frac{1}{2^n}left[frac{2arctan(3tan(x/2))}{3}right]_{0}^{pi}=frac{pi/3}{2^n}.$$
P.S. In order to show that $I(n)$ is not zero for any $n$ it suffices to say that $I(0)>0$ since it is the integral of a positive continuous function.
$endgroup$
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
add a comment |
$begingroup$
$$
frac{1}{5-4cosleft(xright)}=frac{1}{5-2e^{ix}-2e^{-ix}}=frac{e^{ix}}{5e^{ix}-2e^{2ix}-2}
$$
Let $X=e^{ix}$ then
$$
-2X^2+5X-2=-left(2X-1right)left(X-2right)
$$
Now we do a partial decomposition
$$-frac{1}{left(2X-1right)left(X-2right)}=frac{2}{3}frac{1}{2X-1}-frac{1}{3}frac{1}{X-2}
$$
So far we have
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}frac{1}{2e^{ix}-1}-frac{2}{3}frac{1}{e^{ix}-2}
$$
We'll express this as a series, so we transform it into an adapted form
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(frac{1}{2e^{ix}-1}-frac{2}{e^{ix}-2}right)=frac{1}{3}left(frac{frac{1}{2}e^{-ix}}{displaystyle {1-frac{1}{2}e^{-ix}}}+frac{1}{1-frac{1}{2}e^{ix}}right)$$
Hence
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(sum_{n=1}^{+infty}left(frac{1}{2}right)^ne^{-inx}+sum_{n=0}^{+infty}left(frac{1}{2}right)^ne^{inx}right)
$$
which finally gave us
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(1+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}cosleft(nxright)right)$$
Hence using normal convergence
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x
$$
Using that
$$
int_{0}^{pi}cosleft(Kxright)text{d}x=0
$$
for all $K in mathbb{Z}$, we have
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=frac{pi}{3}left(frac{1}{2}right)^{2018}
$$
$endgroup$
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2820433%2fintegral-int-0-pi-frac-cos2018x5-4-cosxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are correct! This is an elementary approach without complex analysis.
Since $$cos((n+1)x)+cos((n-1)x)=2cos(nx)cos(x)$$ then for $ngeq 1$, we have the linear recurrence
$$begin{align}
I(n-1)+I(n+1)&=int_{0}^{pi}frac{2cos(nx)cos(x)}{5-4cos(x)} dx\
&=
-frac{1}{2}int_{0}^{pi}frac{cos(nx)(-5+5-4cos(x))}{5-4cos(x)} dx\
&=
frac{5}{2}I(n)-frac{1}{2}int_{0}^{pi}cos(nx) dx=frac{5}{2}I(n).
end{align}$$
Then
$$I(n)=A2^n+frac{B}{2^n}$$
for some constants $A$ and $B$. Since $I(n)$ is bounded it follows that $A=0$ and
$$I(n)=frac{I(0)}{2^n}=frac{1}{2^n}int_{0}^{pi}frac{dx}{5-4cos(x)} =frac{1}{2^n}left[frac{2arctan(3tan(x/2))}{3}right]_{0}^{pi}=frac{pi/3}{2^n}.$$
P.S. In order to show that $I(n)$ is not zero for any $n$ it suffices to say that $I(0)>0$ since it is the integral of a positive continuous function.
$endgroup$
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
add a comment |
$begingroup$
You are correct! This is an elementary approach without complex analysis.
Since $$cos((n+1)x)+cos((n-1)x)=2cos(nx)cos(x)$$ then for $ngeq 1$, we have the linear recurrence
$$begin{align}
I(n-1)+I(n+1)&=int_{0}^{pi}frac{2cos(nx)cos(x)}{5-4cos(x)} dx\
&=
-frac{1}{2}int_{0}^{pi}frac{cos(nx)(-5+5-4cos(x))}{5-4cos(x)} dx\
&=
frac{5}{2}I(n)-frac{1}{2}int_{0}^{pi}cos(nx) dx=frac{5}{2}I(n).
end{align}$$
Then
$$I(n)=A2^n+frac{B}{2^n}$$
for some constants $A$ and $B$. Since $I(n)$ is bounded it follows that $A=0$ and
$$I(n)=frac{I(0)}{2^n}=frac{1}{2^n}int_{0}^{pi}frac{dx}{5-4cos(x)} =frac{1}{2^n}left[frac{2arctan(3tan(x/2))}{3}right]_{0}^{pi}=frac{pi/3}{2^n}.$$
P.S. In order to show that $I(n)$ is not zero for any $n$ it suffices to say that $I(0)>0$ since it is the integral of a positive continuous function.
$endgroup$
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
add a comment |
$begingroup$
You are correct! This is an elementary approach without complex analysis.
Since $$cos((n+1)x)+cos((n-1)x)=2cos(nx)cos(x)$$ then for $ngeq 1$, we have the linear recurrence
$$begin{align}
I(n-1)+I(n+1)&=int_{0}^{pi}frac{2cos(nx)cos(x)}{5-4cos(x)} dx\
&=
-frac{1}{2}int_{0}^{pi}frac{cos(nx)(-5+5-4cos(x))}{5-4cos(x)} dx\
&=
frac{5}{2}I(n)-frac{1}{2}int_{0}^{pi}cos(nx) dx=frac{5}{2}I(n).
end{align}$$
Then
$$I(n)=A2^n+frac{B}{2^n}$$
for some constants $A$ and $B$. Since $I(n)$ is bounded it follows that $A=0$ and
$$I(n)=frac{I(0)}{2^n}=frac{1}{2^n}int_{0}^{pi}frac{dx}{5-4cos(x)} =frac{1}{2^n}left[frac{2arctan(3tan(x/2))}{3}right]_{0}^{pi}=frac{pi/3}{2^n}.$$
P.S. In order to show that $I(n)$ is not zero for any $n$ it suffices to say that $I(0)>0$ since it is the integral of a positive continuous function.
$endgroup$
You are correct! This is an elementary approach without complex analysis.
Since $$cos((n+1)x)+cos((n-1)x)=2cos(nx)cos(x)$$ then for $ngeq 1$, we have the linear recurrence
$$begin{align}
I(n-1)+I(n+1)&=int_{0}^{pi}frac{2cos(nx)cos(x)}{5-4cos(x)} dx\
&=
-frac{1}{2}int_{0}^{pi}frac{cos(nx)(-5+5-4cos(x))}{5-4cos(x)} dx\
&=
frac{5}{2}I(n)-frac{1}{2}int_{0}^{pi}cos(nx) dx=frac{5}{2}I(n).
end{align}$$
Then
$$I(n)=A2^n+frac{B}{2^n}$$
for some constants $A$ and $B$. Since $I(n)$ is bounded it follows that $A=0$ and
$$I(n)=frac{I(0)}{2^n}=frac{1}{2^n}int_{0}^{pi}frac{dx}{5-4cos(x)} =frac{1}{2^n}left[frac{2arctan(3tan(x/2))}{3}right]_{0}^{pi}=frac{pi/3}{2^n}.$$
P.S. In order to show that $I(n)$ is not zero for any $n$ it suffices to say that $I(0)>0$ since it is the integral of a positive continuous function.
edited Dec 12 '18 at 6:26
answered Jun 15 '18 at 8:34
Robert ZRobert Z
96.3k1065136
96.3k1065136
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
add a comment |
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
1
1
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
You are correct. This is another way.
$endgroup$
– Robert Z
Jun 15 '18 at 8:43
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
$begingroup$
Can I share your answer sir, if I will give credit?
$endgroup$
– Zacky
Jun 15 '18 at 9:24
1
1
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
$begingroup$
Sure, you can share it!
$endgroup$
– Robert Z
Jun 15 '18 at 9:28
add a comment |
$begingroup$
$$
frac{1}{5-4cosleft(xright)}=frac{1}{5-2e^{ix}-2e^{-ix}}=frac{e^{ix}}{5e^{ix}-2e^{2ix}-2}
$$
Let $X=e^{ix}$ then
$$
-2X^2+5X-2=-left(2X-1right)left(X-2right)
$$
Now we do a partial decomposition
$$-frac{1}{left(2X-1right)left(X-2right)}=frac{2}{3}frac{1}{2X-1}-frac{1}{3}frac{1}{X-2}
$$
So far we have
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}frac{1}{2e^{ix}-1}-frac{2}{3}frac{1}{e^{ix}-2}
$$
We'll express this as a series, so we transform it into an adapted form
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(frac{1}{2e^{ix}-1}-frac{2}{e^{ix}-2}right)=frac{1}{3}left(frac{frac{1}{2}e^{-ix}}{displaystyle {1-frac{1}{2}e^{-ix}}}+frac{1}{1-frac{1}{2}e^{ix}}right)$$
Hence
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(sum_{n=1}^{+infty}left(frac{1}{2}right)^ne^{-inx}+sum_{n=0}^{+infty}left(frac{1}{2}right)^ne^{inx}right)
$$
which finally gave us
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(1+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}cosleft(nxright)right)$$
Hence using normal convergence
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x
$$
Using that
$$
int_{0}^{pi}cosleft(Kxright)text{d}x=0
$$
for all $K in mathbb{Z}$, we have
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=frac{pi}{3}left(frac{1}{2}right)^{2018}
$$
$endgroup$
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
add a comment |
$begingroup$
$$
frac{1}{5-4cosleft(xright)}=frac{1}{5-2e^{ix}-2e^{-ix}}=frac{e^{ix}}{5e^{ix}-2e^{2ix}-2}
$$
Let $X=e^{ix}$ then
$$
-2X^2+5X-2=-left(2X-1right)left(X-2right)
$$
Now we do a partial decomposition
$$-frac{1}{left(2X-1right)left(X-2right)}=frac{2}{3}frac{1}{2X-1}-frac{1}{3}frac{1}{X-2}
$$
So far we have
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}frac{1}{2e^{ix}-1}-frac{2}{3}frac{1}{e^{ix}-2}
$$
We'll express this as a series, so we transform it into an adapted form
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(frac{1}{2e^{ix}-1}-frac{2}{e^{ix}-2}right)=frac{1}{3}left(frac{frac{1}{2}e^{-ix}}{displaystyle {1-frac{1}{2}e^{-ix}}}+frac{1}{1-frac{1}{2}e^{ix}}right)$$
Hence
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(sum_{n=1}^{+infty}left(frac{1}{2}right)^ne^{-inx}+sum_{n=0}^{+infty}left(frac{1}{2}right)^ne^{inx}right)
$$
which finally gave us
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(1+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}cosleft(nxright)right)$$
Hence using normal convergence
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x
$$
Using that
$$
int_{0}^{pi}cosleft(Kxright)text{d}x=0
$$
for all $K in mathbb{Z}$, we have
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=frac{pi}{3}left(frac{1}{2}right)^{2018}
$$
$endgroup$
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
add a comment |
$begingroup$
$$
frac{1}{5-4cosleft(xright)}=frac{1}{5-2e^{ix}-2e^{-ix}}=frac{e^{ix}}{5e^{ix}-2e^{2ix}-2}
$$
Let $X=e^{ix}$ then
$$
-2X^2+5X-2=-left(2X-1right)left(X-2right)
$$
Now we do a partial decomposition
$$-frac{1}{left(2X-1right)left(X-2right)}=frac{2}{3}frac{1}{2X-1}-frac{1}{3}frac{1}{X-2}
$$
So far we have
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}frac{1}{2e^{ix}-1}-frac{2}{3}frac{1}{e^{ix}-2}
$$
We'll express this as a series, so we transform it into an adapted form
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(frac{1}{2e^{ix}-1}-frac{2}{e^{ix}-2}right)=frac{1}{3}left(frac{frac{1}{2}e^{-ix}}{displaystyle {1-frac{1}{2}e^{-ix}}}+frac{1}{1-frac{1}{2}e^{ix}}right)$$
Hence
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(sum_{n=1}^{+infty}left(frac{1}{2}right)^ne^{-inx}+sum_{n=0}^{+infty}left(frac{1}{2}right)^ne^{inx}right)
$$
which finally gave us
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(1+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}cosleft(nxright)right)$$
Hence using normal convergence
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x
$$
Using that
$$
int_{0}^{pi}cosleft(Kxright)text{d}x=0
$$
for all $K in mathbb{Z}$, we have
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=frac{pi}{3}left(frac{1}{2}right)^{2018}
$$
$endgroup$
$$
frac{1}{5-4cosleft(xright)}=frac{1}{5-2e^{ix}-2e^{-ix}}=frac{e^{ix}}{5e^{ix}-2e^{2ix}-2}
$$
Let $X=e^{ix}$ then
$$
-2X^2+5X-2=-left(2X-1right)left(X-2right)
$$
Now we do a partial decomposition
$$-frac{1}{left(2X-1right)left(X-2right)}=frac{2}{3}frac{1}{2X-1}-frac{1}{3}frac{1}{X-2}
$$
So far we have
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}frac{1}{2e^{ix}-1}-frac{2}{3}frac{1}{e^{ix}-2}
$$
We'll express this as a series, so we transform it into an adapted form
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(frac{1}{2e^{ix}-1}-frac{2}{e^{ix}-2}right)=frac{1}{3}left(frac{frac{1}{2}e^{-ix}}{displaystyle {1-frac{1}{2}e^{-ix}}}+frac{1}{1-frac{1}{2}e^{ix}}right)$$
Hence
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(sum_{n=1}^{+infty}left(frac{1}{2}right)^ne^{-inx}+sum_{n=0}^{+infty}left(frac{1}{2}right)^ne^{inx}right)
$$
which finally gave us
$$
frac{1}{5-4cosleft(xright)}=frac{1}{3}left(1+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}cosleft(nxright)right)$$
Hence using normal convergence
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x
$$
Using that
$$
int_{0}^{pi}cosleft(Kxright)text{d}x=0
$$
for all $K in mathbb{Z}$, we have
$$
int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=frac{pi}{3}left(frac{1}{2}right)^{2018}
$$
edited Jun 15 '18 at 8:58
answered Jun 15 '18 at 8:33
AtmosAtmos
4,805420
4,805420
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
add a comment |
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
1
1
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
It should be $$int_{0}^{pi}frac{cosleft(2018xright)}{5-4cosleft(xright)}text{d}x=int_{0}^{pi}frac{cosleft(2018 xright)}{3}text{d}x+frac{1}{3}sum_{n=1}^{+infty}left(frac{1}{2}right)^{n-1}int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x$$ and $int_{0}^{pi}cosleft(nxright)cosleft(2018xright)text{d}x=pi/2$ when $n=2018$ (otherwise it is zero.
$endgroup$
– Robert Z
Jun 15 '18 at 8:49
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
$begingroup$
Yes you're right
$endgroup$
– Atmos
Jun 15 '18 at 8:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2820433%2fintegral-int-0-pi-frac-cos2018x5-4-cosxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
There's a way using series, i'll write it
$endgroup$
– Atmos
Jun 15 '18 at 8:17
3
$begingroup$
You are correct!
$endgroup$
– Robert Z
Jun 15 '18 at 8:19
2
$begingroup$
I think your quadratic $-2z^{2}+5z-2$ is wrong. Shouldn't it be $10z-z^{2}-1$?
$endgroup$
– preferred_anon
Jun 15 '18 at 8:39
$begingroup$
I forgot a 4 as a factor there.
$endgroup$
– Zacky
Jun 15 '18 at 8:40
2
$begingroup$
You have a small mistake. $enspace$ It's $-frac{1}{2}(2z-4)(2z-1)neq -2(z-2)(z-frac{1}{2})$ and $-frac{1}{2}(2z-4)(2z-1)=-2(2z-4)(z-frac{1}{2})$ $enspace$ Then $displaystyle X=...=frac{pi}{3cdot 2^k}$ . But the other calculations are correct. $(+1)$
$endgroup$
– user90369
Jun 15 '18 at 14:09