Is this sum less when it contains less positive terms?
$begingroup$
Problem
Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
left{
begin{array}{ccrcl}
{displaystylefrac{1}{2k}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k - 1}
\[1mm]
{displaystylefrac{1}{2k - 1}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k}
end{array}right.
\epsilon_n=[frac{1}{2}]^n\
f(x)=sum_{n:x_n<x}epsilon_n
$$
(A)Compute f(1), f(1/2)
(B) Determine the set of discontinuities for the function
Solution
So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$
So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$
$f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$
Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$
Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$
For the points of discontinuity, I think the sequence should be continuous everywhere.
Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$
real-analysis
$endgroup$
add a comment |
$begingroup$
Problem
Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
left{
begin{array}{ccrcl}
{displaystylefrac{1}{2k}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k - 1}
\[1mm]
{displaystylefrac{1}{2k - 1}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k}
end{array}right.
\epsilon_n=[frac{1}{2}]^n\
f(x)=sum_{n:x_n<x}epsilon_n
$$
(A)Compute f(1), f(1/2)
(B) Determine the set of discontinuities for the function
Solution
So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$
So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$
$f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$
Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$
Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$
For the points of discontinuity, I think the sequence should be continuous everywhere.
Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$
real-analysis
$endgroup$
add a comment |
$begingroup$
Problem
Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
left{
begin{array}{ccrcl}
{displaystylefrac{1}{2k}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k - 1}
\[1mm]
{displaystylefrac{1}{2k - 1}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k}
end{array}right.
\epsilon_n=[frac{1}{2}]^n\
f(x)=sum_{n:x_n<x}epsilon_n
$$
(A)Compute f(1), f(1/2)
(B) Determine the set of discontinuities for the function
Solution
So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$
So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$
$f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$
Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$
Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$
For the points of discontinuity, I think the sequence should be continuous everywhere.
Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$
real-analysis
$endgroup$
Problem
Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
left{
begin{array}{ccrcl}
{displaystylefrac{1}{2k}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k - 1}
\[1mm]
{displaystylefrac{1}{2k - 1}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k}
end{array}right.
\epsilon_n=[frac{1}{2}]^n\
f(x)=sum_{n:x_n<x}epsilon_n
$$
(A)Compute f(1), f(1/2)
(B) Determine the set of discontinuities for the function
Solution
So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$
So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$
$f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$
Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$
Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$
For the points of discontinuity, I think the sequence should be continuous everywhere.
Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$
real-analysis
real-analysis
edited Dec 12 '18 at 5:23
Felix Marin
67.8k7107142
67.8k7107142
asked Dec 12 '18 at 5:00
FrankFrank
16210
16210
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$
So $f(x)=2>f(1)::forall:x>1$.
$f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036245%2fis-this-sum-less-when-it-contains-less-positive-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$
So $f(x)=2>f(1)::forall:x>1$.
$f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$
$endgroup$
add a comment |
$begingroup$
For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$
So $f(x)=2>f(1)::forall:x>1$.
$f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$
$endgroup$
add a comment |
$begingroup$
For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$
So $f(x)=2>f(1)::forall:x>1$.
$f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$
$endgroup$
For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$
So $f(x)=2>f(1)::forall:x>1$.
$f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$
edited Dec 18 '18 at 10:12
answered Dec 12 '18 at 5:42
Yadati KiranYadati Kiran
1,773619
1,773619
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036245%2fis-this-sum-less-when-it-contains-less-positive-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown