Is this sum less when it contains less positive terms?












0












$begingroup$


Problem



Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
left{
begin{array}{ccrcl}
{displaystylefrac{1}{2k}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k - 1}
\[1mm]
{displaystylefrac{1}{2k - 1}} & mbox{if} &
{displaystyle n} & {displaystyle =} &
{displaystyle 2k}
end{array}right.
\epsilon_n=[frac{1}{2}]^n\
f(x)=sum_{n:x_n<x}epsilon_n
$$



(A)Compute f(1), f(1/2)



(B) Determine the set of discontinuities for the function



Solution



So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$



So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$



$f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$



Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$



Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$



For the points of discontinuity, I think the sequence should be continuous everywhere.



Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Problem



    Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
    left{
    begin{array}{ccrcl}
    {displaystylefrac{1}{2k}} & mbox{if} &
    {displaystyle n} & {displaystyle =} &
    {displaystyle 2k - 1}
    \[1mm]
    {displaystylefrac{1}{2k - 1}} & mbox{if} &
    {displaystyle n} & {displaystyle =} &
    {displaystyle 2k}
    end{array}right.
    \epsilon_n=[frac{1}{2}]^n\
    f(x)=sum_{n:x_n<x}epsilon_n
    $$



    (A)Compute f(1), f(1/2)



    (B) Determine the set of discontinuities for the function



    Solution



    So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$



    So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$



    $f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$



    Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$



    Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$



    For the points of discontinuity, I think the sequence should be continuous everywhere.



    Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Problem



      Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
      left{
      begin{array}{ccrcl}
      {displaystylefrac{1}{2k}} & mbox{if} &
      {displaystyle n} & {displaystyle =} &
      {displaystyle 2k - 1}
      \[1mm]
      {displaystylefrac{1}{2k - 1}} & mbox{if} &
      {displaystyle n} & {displaystyle =} &
      {displaystyle 2k}
      end{array}right.
      \epsilon_n=[frac{1}{2}]^n\
      f(x)=sum_{n:x_n<x}epsilon_n
      $$



      (A)Compute f(1), f(1/2)



      (B) Determine the set of discontinuities for the function



      Solution



      So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$



      So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$



      $f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$



      Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$



      Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$



      For the points of discontinuity, I think the sequence should be continuous everywhere.



      Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$










      share|cite|improve this question











      $endgroup$




      Problem



      Let ${X_n}$ be a sequence of real numbers defined by $$x_n=
      left{
      begin{array}{ccrcl}
      {displaystylefrac{1}{2k}} & mbox{if} &
      {displaystyle n} & {displaystyle =} &
      {displaystyle 2k - 1}
      \[1mm]
      {displaystylefrac{1}{2k - 1}} & mbox{if} &
      {displaystyle n} & {displaystyle =} &
      {displaystyle 2k}
      end{array}right.
      \epsilon_n=[frac{1}{2}]^n\
      f(x)=sum_{n:x_n<x}epsilon_n
      $$



      (A)Compute f(1), f(1/2)



      (B) Determine the set of discontinuities for the function



      Solution



      So with mathematica I computed $x_n={frac{1}{2},1,frac{1}{4},frac{1}{3},frac{1}{6},frac{1}{5},frac{1}{8},frac{1}{7}...}$



      So, $f(1)=frac{1}{2}+sum_{n:x_n<1}frac{1}{2}^2=frac{1}{2}+frac{1}{1-1/2}=frac{1}{2}+2=frac{3}{2}$



      $f(frac{1}{2})=sum_{n:x_n<1/2}frac{1}{2}^2=frac{1}{1-1/2}=2$



      Yet I noticed that the sum of all terms$=f(infty)=$ $sum_0^{infty}frac{1}{2}^2=frac{1}{1-1/2}=2$



      Why is $f(1)$ greater than the sum of all terms, when all terms are positive? Shouldn't $f(1)<f(infty)$



      For the points of discontinuity, I think the sequence should be continuous everywhere.



      Choose $delta$ such that $delta=x_n-x_{n-3},$ Then $forall epsilon > 0$, $forall yin B_{delta}(x_n),|x_n-y|<delta$, $|f(x_n)-f(y)|=|f(x_n)-f(x_n)|<epsilon$







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 12 '18 at 5:23









      Felix Marin

      67.8k7107142




      67.8k7107142










      asked Dec 12 '18 at 5:00









      FrankFrank

      16210




      16210






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
          Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$



          So $f(x)=2>f(1)::forall:x>1$.



          $f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$



          enter image description here






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036245%2fis-this-sum-less-when-it-contains-less-positive-terms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
            Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$



            So $f(x)=2>f(1)::forall:x>1$.



            $f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$



            enter image description here






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
              Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$



              So $f(x)=2>f(1)::forall:x>1$.



              $f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$



              enter image description here






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
                Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$



                So $f(x)=2>f(1)::forall:x>1$.



                $f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$



                enter image description here






                share|cite|improve this answer











                $endgroup$



                For calculating $f(1)$, see that ${ninmathbb{N}:x_n<x}={ninmathbb{N}:nneq2}$. $$f(1)=sum_{substack{n:x_n<x\n neq2}}varepsilon^n=dfrac12+sum_{n=3}^inftyleft(dfrac12right)^n=dfrac34$$
                Similarly $$fleft(dfrac12right)=sum_{n=3}^inftyleft(dfrac12right)^n=dfrac14$$



                So $f(x)=2>f(1)::forall:x>1$.



                $f(x)$ is discontinuous at every $x_n$. For see, $displaystylelim_{xto1^-}f(x)=dfrac34neqlim_{xto1^+}f(x)=2$



                enter image description here







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 18 '18 at 10:12

























                answered Dec 12 '18 at 5:42









                Yadati KiranYadati Kiran

                1,773619




                1,773619






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036245%2fis-this-sum-less-when-it-contains-less-positive-terms%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei