Does $int_0^1 f(x)=int_0^1 xf(x)$ imply $int_0^x f(t)$ has a root












3












$begingroup$


My question is whether or not the following is true:



If $f:[0,1]to mathbb{R}$ is a continous function such that
$$int_0^1 f(x)dx=int_0^1 xf(x)dx$$
then there exist $cin(0,1)$ such that
$$int_0^c f(x)dx=0$$



It is quite clear that in the interval $(0,1)$ there must be some points $a$ such that $f(1)f(a)<0$ but I can't say from this if the statement above is true or not.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Do you have an example of a non-zero function that satisfies the first equality?
    $endgroup$
    – Yanko
    Jan 5 at 12:27












  • $begingroup$
    @Yanko $operatorname{sinc}(2pi (1-x) )$ works
    $endgroup$
    – Calvin Khor
    Jan 5 at 12:35








  • 1




    $begingroup$
    @Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
    $endgroup$
    – Kavi Rama Murthy
    Jan 5 at 12:35










  • $begingroup$
    @KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
    $endgroup$
    – Yanko
    Jan 5 at 12:37
















3












$begingroup$


My question is whether or not the following is true:



If $f:[0,1]to mathbb{R}$ is a continous function such that
$$int_0^1 f(x)dx=int_0^1 xf(x)dx$$
then there exist $cin(0,1)$ such that
$$int_0^c f(x)dx=0$$



It is quite clear that in the interval $(0,1)$ there must be some points $a$ such that $f(1)f(a)<0$ but I can't say from this if the statement above is true or not.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Do you have an example of a non-zero function that satisfies the first equality?
    $endgroup$
    – Yanko
    Jan 5 at 12:27












  • $begingroup$
    @Yanko $operatorname{sinc}(2pi (1-x) )$ works
    $endgroup$
    – Calvin Khor
    Jan 5 at 12:35








  • 1




    $begingroup$
    @Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
    $endgroup$
    – Kavi Rama Murthy
    Jan 5 at 12:35










  • $begingroup$
    @KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
    $endgroup$
    – Yanko
    Jan 5 at 12:37














3












3








3





$begingroup$


My question is whether or not the following is true:



If $f:[0,1]to mathbb{R}$ is a continous function such that
$$int_0^1 f(x)dx=int_0^1 xf(x)dx$$
then there exist $cin(0,1)$ such that
$$int_0^c f(x)dx=0$$



It is quite clear that in the interval $(0,1)$ there must be some points $a$ such that $f(1)f(a)<0$ but I can't say from this if the statement above is true or not.










share|cite|improve this question









$endgroup$




My question is whether or not the following is true:



If $f:[0,1]to mathbb{R}$ is a continous function such that
$$int_0^1 f(x)dx=int_0^1 xf(x)dx$$
then there exist $cin(0,1)$ such that
$$int_0^c f(x)dx=0$$



It is quite clear that in the interval $(0,1)$ there must be some points $a$ such that $f(1)f(a)<0$ but I can't say from this if the statement above is true or not.







real-analysis definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 at 12:18









Andrew VAndrew V

31411




31411












  • $begingroup$
    Do you have an example of a non-zero function that satisfies the first equality?
    $endgroup$
    – Yanko
    Jan 5 at 12:27












  • $begingroup$
    @Yanko $operatorname{sinc}(2pi (1-x) )$ works
    $endgroup$
    – Calvin Khor
    Jan 5 at 12:35








  • 1




    $begingroup$
    @Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
    $endgroup$
    – Kavi Rama Murthy
    Jan 5 at 12:35










  • $begingroup$
    @KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
    $endgroup$
    – Yanko
    Jan 5 at 12:37


















  • $begingroup$
    Do you have an example of a non-zero function that satisfies the first equality?
    $endgroup$
    – Yanko
    Jan 5 at 12:27












  • $begingroup$
    @Yanko $operatorname{sinc}(2pi (1-x) )$ works
    $endgroup$
    – Calvin Khor
    Jan 5 at 12:35








  • 1




    $begingroup$
    @Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
    $endgroup$
    – Kavi Rama Murthy
    Jan 5 at 12:35










  • $begingroup$
    @KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
    $endgroup$
    – Yanko
    Jan 5 at 12:37
















$begingroup$
Do you have an example of a non-zero function that satisfies the first equality?
$endgroup$
– Yanko
Jan 5 at 12:27






$begingroup$
Do you have an example of a non-zero function that satisfies the first equality?
$endgroup$
– Yanko
Jan 5 at 12:27














$begingroup$
@Yanko $operatorname{sinc}(2pi (1-x) )$ works
$endgroup$
– Calvin Khor
Jan 5 at 12:35






$begingroup$
@Yanko $operatorname{sinc}(2pi (1-x) )$ works
$endgroup$
– Calvin Khor
Jan 5 at 12:35






1




1




$begingroup$
@Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
$endgroup$
– Kavi Rama Murthy
Jan 5 at 12:35




$begingroup$
@Yanko Surley there are such functions. There exist $a,b$ such that $ax+b$ satisfies that equation.
$endgroup$
– Kavi Rama Murthy
Jan 5 at 12:35












$begingroup$
@KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
$endgroup$
– Yanko
Jan 5 at 12:37




$begingroup$
@KaviRamaMurthy Right, for $a=6,b=-2$. Thanks.
$endgroup$
– Yanko
Jan 5 at 12:37










2 Answers
2






active

oldest

votes


















3












$begingroup$

Let $F(x)=int_0^{x} f(t), dt$. Then $F(1)=int_0^{1} f(t), dt=int_0^{1} tf(t), dt=tF(t)|_0^{1}-int_0^{1}F(t), dt$. This gives $int_0^{1}F(t), dt=0$. If $F$ has no zeros then it is strictly positive or strictly negative throughout and its integral cannot be $0$. Hence $F(c)=0$ for some $c$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Hint: Note that
    $$
    int_0^1 F(x)dx =int_0^1left(int_0^x f(t)dtright)dx=int_0^1left(int_t^1dxright)f(t)dt= int_0^1 (1-t)f(t)dt
    $$
    where $F(x) = int_0^x f(t)dt$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062662%2fdoes-int-01-fx-int-01-xfx-imply-int-0x-ft-has-a-root%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Let $F(x)=int_0^{x} f(t), dt$. Then $F(1)=int_0^{1} f(t), dt=int_0^{1} tf(t), dt=tF(t)|_0^{1}-int_0^{1}F(t), dt$. This gives $int_0^{1}F(t), dt=0$. If $F$ has no zeros then it is strictly positive or strictly negative throughout and its integral cannot be $0$. Hence $F(c)=0$ for some $c$.






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        Let $F(x)=int_0^{x} f(t), dt$. Then $F(1)=int_0^{1} f(t), dt=int_0^{1} tf(t), dt=tF(t)|_0^{1}-int_0^{1}F(t), dt$. This gives $int_0^{1}F(t), dt=0$. If $F$ has no zeros then it is strictly positive or strictly negative throughout and its integral cannot be $0$. Hence $F(c)=0$ for some $c$.






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          Let $F(x)=int_0^{x} f(t), dt$. Then $F(1)=int_0^{1} f(t), dt=int_0^{1} tf(t), dt=tF(t)|_0^{1}-int_0^{1}F(t), dt$. This gives $int_0^{1}F(t), dt=0$. If $F$ has no zeros then it is strictly positive or strictly negative throughout and its integral cannot be $0$. Hence $F(c)=0$ for some $c$.






          share|cite|improve this answer









          $endgroup$



          Let $F(x)=int_0^{x} f(t), dt$. Then $F(1)=int_0^{1} f(t), dt=int_0^{1} tf(t), dt=tF(t)|_0^{1}-int_0^{1}F(t), dt$. This gives $int_0^{1}F(t), dt=0$. If $F$ has no zeros then it is strictly positive or strictly negative throughout and its integral cannot be $0$. Hence $F(c)=0$ for some $c$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 5 at 12:30









          Kavi Rama MurthyKavi Rama Murthy

          65.1k42766




          65.1k42766























              1












              $begingroup$

              Hint: Note that
              $$
              int_0^1 F(x)dx =int_0^1left(int_0^x f(t)dtright)dx=int_0^1left(int_t^1dxright)f(t)dt= int_0^1 (1-t)f(t)dt
              $$
              where $F(x) = int_0^x f(t)dt$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint: Note that
                $$
                int_0^1 F(x)dx =int_0^1left(int_0^x f(t)dtright)dx=int_0^1left(int_t^1dxright)f(t)dt= int_0^1 (1-t)f(t)dt
                $$
                where $F(x) = int_0^x f(t)dt$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint: Note that
                  $$
                  int_0^1 F(x)dx =int_0^1left(int_0^x f(t)dtright)dx=int_0^1left(int_t^1dxright)f(t)dt= int_0^1 (1-t)f(t)dt
                  $$
                  where $F(x) = int_0^x f(t)dt$.






                  share|cite|improve this answer









                  $endgroup$



                  Hint: Note that
                  $$
                  int_0^1 F(x)dx =int_0^1left(int_0^x f(t)dtright)dx=int_0^1left(int_t^1dxright)f(t)dt= int_0^1 (1-t)f(t)dt
                  $$
                  where $F(x) = int_0^x f(t)dt$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 5 at 12:30









                  SongSong

                  16.8k11042




                  16.8k11042






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062662%2fdoes-int-01-fx-int-01-xfx-imply-int-0x-ft-has-a-root%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei