Find an Example for a linear map $T: F^4 to F^4$ such that $ImT = KerT = sp{(1, 1, 1, 1), (1, 1, 1, 0)}$
$begingroup$
Find an Example for a linear map $T: F^4 to F^4$
such that $$ImT = KerT = sp{(1, 1, 1, 1), (1, 1, 1, 0)}$$
My Attempt:
First I completed the two vectors ${(1, 1, 1, 1), (1, 1, 1, 0)}$ to a base of $F^4$, so I picked: ${(1, 0, 0, 0), (0, 0, 1, 0)}$
So I'm looking for a map T such that $$ T((1, 1, 1, 1) = T((1, 1, 1, 0)) = 0 ; T((1,0, 0, 0)) = (1, 1, 1, 1), T(( 0 , 0 , 1, 0)) = (1, 1, 1, 0) $$
Now, Let $(x, y, z, w) in F^4$.
This is where I got stuck. what does the vector $(x, y, z, w)$ needs to be existing in order that I could find a linear map $T$ as needed?
linear-algebra linear-transformations
$endgroup$
add a comment |
$begingroup$
Find an Example for a linear map $T: F^4 to F^4$
such that $$ImT = KerT = sp{(1, 1, 1, 1), (1, 1, 1, 0)}$$
My Attempt:
First I completed the two vectors ${(1, 1, 1, 1), (1, 1, 1, 0)}$ to a base of $F^4$, so I picked: ${(1, 0, 0, 0), (0, 0, 1, 0)}$
So I'm looking for a map T such that $$ T((1, 1, 1, 1) = T((1, 1, 1, 0)) = 0 ; T((1,0, 0, 0)) = (1, 1, 1, 1), T(( 0 , 0 , 1, 0)) = (1, 1, 1, 0) $$
Now, Let $(x, y, z, w) in F^4$.
This is where I got stuck. what does the vector $(x, y, z, w)$ needs to be existing in order that I could find a linear map $T$ as needed?
linear-algebra linear-transformations
$endgroup$
add a comment |
$begingroup$
Find an Example for a linear map $T: F^4 to F^4$
such that $$ImT = KerT = sp{(1, 1, 1, 1), (1, 1, 1, 0)}$$
My Attempt:
First I completed the two vectors ${(1, 1, 1, 1), (1, 1, 1, 0)}$ to a base of $F^4$, so I picked: ${(1, 0, 0, 0), (0, 0, 1, 0)}$
So I'm looking for a map T such that $$ T((1, 1, 1, 1) = T((1, 1, 1, 0)) = 0 ; T((1,0, 0, 0)) = (1, 1, 1, 1), T(( 0 , 0 , 1, 0)) = (1, 1, 1, 0) $$
Now, Let $(x, y, z, w) in F^4$.
This is where I got stuck. what does the vector $(x, y, z, w)$ needs to be existing in order that I could find a linear map $T$ as needed?
linear-algebra linear-transformations
$endgroup$
Find an Example for a linear map $T: F^4 to F^4$
such that $$ImT = KerT = sp{(1, 1, 1, 1), (1, 1, 1, 0)}$$
My Attempt:
First I completed the two vectors ${(1, 1, 1, 1), (1, 1, 1, 0)}$ to a base of $F^4$, so I picked: ${(1, 0, 0, 0), (0, 0, 1, 0)}$
So I'm looking for a map T such that $$ T((1, 1, 1, 1) = T((1, 1, 1, 0)) = 0 ; T((1,0, 0, 0)) = (1, 1, 1, 1), T(( 0 , 0 , 1, 0)) = (1, 1, 1, 0) $$
Now, Let $(x, y, z, w) in F^4$.
This is where I got stuck. what does the vector $(x, y, z, w)$ needs to be existing in order that I could find a linear map $T$ as needed?
linear-algebra linear-transformations
linear-algebra linear-transformations
edited Jan 5 at 10:57
Jneven
asked Jan 5 at 10:43
JnevenJneven
906322
906322
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint
In the basis you chosed (I haven’t verified that it is indeed a basis), the matrix of a linear map satisfying the required condition is
$$T=begin{pmatrix}
0&0&1&0\
0&0&0&1\
0&0&0&0\
0&0&0&0
end{pmatrix}$$
Then use a change of basis.
$endgroup$
add a comment |
$begingroup$
$T(1,0,0,0)$ is the first column vector of $[T]$, while $T(0,0,1,0)$ is the third column vector. Thus, your second and third conditions imply that the first column of $[T]$ is $(1,1,1,1)^T$ and its second column is $(1,1,1,0)^T$.
For $T(1,1,1,1)=T(1,1,1,0)=0$, you require that all rows of $[T]$ should be orthogonal to $(1,1,1,1),(1,1,1,0)$. Therefore,
$$[T]=begin{bmatrix}1&-2&1&0\1&-2&1&0\1&-2&1&0\1&-1&0&0end{bmatrix}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062600%2ffind-an-example-for-a-linear-map-t-f4-to-f4-such-that-imt-kert-sp-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
In the basis you chosed (I haven’t verified that it is indeed a basis), the matrix of a linear map satisfying the required condition is
$$T=begin{pmatrix}
0&0&1&0\
0&0&0&1\
0&0&0&0\
0&0&0&0
end{pmatrix}$$
Then use a change of basis.
$endgroup$
add a comment |
$begingroup$
Hint
In the basis you chosed (I haven’t verified that it is indeed a basis), the matrix of a linear map satisfying the required condition is
$$T=begin{pmatrix}
0&0&1&0\
0&0&0&1\
0&0&0&0\
0&0&0&0
end{pmatrix}$$
Then use a change of basis.
$endgroup$
add a comment |
$begingroup$
Hint
In the basis you chosed (I haven’t verified that it is indeed a basis), the matrix of a linear map satisfying the required condition is
$$T=begin{pmatrix}
0&0&1&0\
0&0&0&1\
0&0&0&0\
0&0&0&0
end{pmatrix}$$
Then use a change of basis.
$endgroup$
Hint
In the basis you chosed (I haven’t verified that it is indeed a basis), the matrix of a linear map satisfying the required condition is
$$T=begin{pmatrix}
0&0&1&0\
0&0&0&1\
0&0&0&0\
0&0&0&0
end{pmatrix}$$
Then use a change of basis.
answered Jan 5 at 10:52
mathcounterexamples.netmathcounterexamples.net
27k22157
27k22157
add a comment |
add a comment |
$begingroup$
$T(1,0,0,0)$ is the first column vector of $[T]$, while $T(0,0,1,0)$ is the third column vector. Thus, your second and third conditions imply that the first column of $[T]$ is $(1,1,1,1)^T$ and its second column is $(1,1,1,0)^T$.
For $T(1,1,1,1)=T(1,1,1,0)=0$, you require that all rows of $[T]$ should be orthogonal to $(1,1,1,1),(1,1,1,0)$. Therefore,
$$[T]=begin{bmatrix}1&-2&1&0\1&-2&1&0\1&-2&1&0\1&-1&0&0end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
$T(1,0,0,0)$ is the first column vector of $[T]$, while $T(0,0,1,0)$ is the third column vector. Thus, your second and third conditions imply that the first column of $[T]$ is $(1,1,1,1)^T$ and its second column is $(1,1,1,0)^T$.
For $T(1,1,1,1)=T(1,1,1,0)=0$, you require that all rows of $[T]$ should be orthogonal to $(1,1,1,1),(1,1,1,0)$. Therefore,
$$[T]=begin{bmatrix}1&-2&1&0\1&-2&1&0\1&-2&1&0\1&-1&0&0end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
$T(1,0,0,0)$ is the first column vector of $[T]$, while $T(0,0,1,0)$ is the third column vector. Thus, your second and third conditions imply that the first column of $[T]$ is $(1,1,1,1)^T$ and its second column is $(1,1,1,0)^T$.
For $T(1,1,1,1)=T(1,1,1,0)=0$, you require that all rows of $[T]$ should be orthogonal to $(1,1,1,1),(1,1,1,0)$. Therefore,
$$[T]=begin{bmatrix}1&-2&1&0\1&-2&1&0\1&-2&1&0\1&-1&0&0end{bmatrix}$$
$endgroup$
$T(1,0,0,0)$ is the first column vector of $[T]$, while $T(0,0,1,0)$ is the third column vector. Thus, your second and third conditions imply that the first column of $[T]$ is $(1,1,1,1)^T$ and its second column is $(1,1,1,0)^T$.
For $T(1,1,1,1)=T(1,1,1,0)=0$, you require that all rows of $[T]$ should be orthogonal to $(1,1,1,1),(1,1,1,0)$. Therefore,
$$[T]=begin{bmatrix}1&-2&1&0\1&-2&1&0\1&-2&1&0\1&-1&0&0end{bmatrix}$$
answered Jan 5 at 11:05
Shubham JohriShubham Johri
5,204718
5,204718
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062600%2ffind-an-example-for-a-linear-map-t-f4-to-f4-such-that-imt-kert-sp-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown