Proving that $Awin langle wrangle implies A$ is of the form $lambda I_n$












0












$begingroup$


If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
$A=
begin{bmatrix}
lambda & & \
& ddots & a_{ij}\
& & lambda
end{bmatrix}$
is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.



But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.



How to show that $Awnotin langle wrangle$?



Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?



For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
    $A=
    begin{bmatrix}
    lambda & & \
    & ddots & a_{ij}\
    & & lambda
    end{bmatrix}$
    is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.



    But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.



    How to show that $Awnotin langle wrangle$?



    Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?



    For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
      $A=
      begin{bmatrix}
      lambda & & \
      & ddots & a_{ij}\
      & & lambda
      end{bmatrix}$
      is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.



      But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.



      How to show that $Awnotin langle wrangle$?



      Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?



      For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$










      share|cite|improve this question











      $endgroup$




      If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
      $A=
      begin{bmatrix}
      lambda & & \
      & ddots & a_{ij}\
      & & lambda
      end{bmatrix}$
      is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.



      But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.



      How to show that $Awnotin langle wrangle$?



      Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?



      For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$







      linear-algebra group-theory linear-groups general-linear-group






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 8 at 7:37









      Martin Sleziak

      44.8k10119273




      44.8k10119273










      asked Jan 5 at 10:39









      John CataldoJohn Cataldo

      1,1881316




      1,1881316






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062599%2fproving-that-aw-in-langle-w-rangle-implies-a-is-of-the-form-lambda-i-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.






                share|cite|improve this answer









                $endgroup$



                The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 5 at 11:14









                metamorphymetamorphy

                3,7021621




                3,7021621






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062599%2fproving-that-aw-in-langle-w-rangle-implies-a-is-of-the-form-lambda-i-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei