Proving that $Awin langle wrangle implies A$ is of the form $lambda I_n$
$begingroup$
If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
$A=
begin{bmatrix}
lambda & & \
& ddots & a_{ij}\
& & lambda
end{bmatrix}$ is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.
But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.
How to show that $Awnotin langle wrangle$?
Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?
For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$
linear-algebra group-theory linear-groups general-linear-group
$endgroup$
add a comment |
$begingroup$
If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
$A=
begin{bmatrix}
lambda & & \
& ddots & a_{ij}\
& & lambda
end{bmatrix}$ is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.
But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.
How to show that $Awnotin langle wrangle$?
Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?
For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$
linear-algebra group-theory linear-groups general-linear-group
$endgroup$
add a comment |
$begingroup$
If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
$A=
begin{bmatrix}
lambda & & \
& ddots & a_{ij}\
& & lambda
end{bmatrix}$ is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.
But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.
How to show that $Awnotin langle wrangle$?
Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?
For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$
linear-algebra group-theory linear-groups general-linear-group
$endgroup$
If $w=begin{bmatrix} w_1\ vdots\w_n end{bmatrix}$ is a vector in $K^n$ for a field $K$ and
$A=
begin{bmatrix}
lambda & & \
& ddots & a_{ij}\
& & lambda
end{bmatrix}$ is a $ntimes n $ matrix with entries on $K$ and $lambdain K^{*}$ then $Aw=lambda w+e_i a_{ij} w_jnotinlangle wrangle$ if $ine j$. And so $langle A wranglene langle wrangle$ where $langle wrangle$ is the $1$ dimensional vector space generated by $w$.
But if $A$ is a general matrix in $GL_n(K)$ that is not of the form $lambda I_n$ then $Aw=sumlimits_{i=1}^nsumlimits_{j=1}^n a_{ij}w_je_i$.
How to show that $Awnotin langle wrangle$?
Can we decompose $A$ into $sum A_{ij}$ where each $A_{ij}$ has a simple form like above (so $A_{ij}wnotin langle wrangle$) and say that $Aw=underbrace{sum A_{ij}w}_{notin langle wrangle} notin langle wrangle$?
For context the question asks to prove that $AW=W~~forall Win{text{sub-vector-spaces of } K^n text{ with dimension 1}} iff A=lambda I_n$ for some $lambdain K^{*}$
linear-algebra group-theory linear-groups general-linear-group
linear-algebra group-theory linear-groups general-linear-group
edited Jan 8 at 7:37
Martin Sleziak
44.8k10119273
44.8k10119273
asked Jan 5 at 10:39
John CataldoJohn Cataldo
1,1881316
1,1881316
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062599%2fproving-that-aw-in-langle-w-rangle-implies-a-is-of-the-form-lambda-i-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.
$endgroup$
add a comment |
$begingroup$
The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.
$endgroup$
add a comment |
$begingroup$
The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.
$endgroup$
The condition $Awinlangle wrangle$, applied to elements of the standard basis of $K^n$, implies that $A$ is a diagonal matrix. Now, for elements $w_1neq w_2$ of the basis, being linearly independent, $Aw_1=lambda_1 w_1$ and $Aw_2=lambda_2 w_2$ together with $A(w_1+w_2)=lambda(w_1+w_2)$ imply $lambda_1=lambda_2(=lambda)$.
answered Jan 5 at 11:14
metamorphymetamorphy
3,7021621
3,7021621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062599%2fproving-that-aw-in-langle-w-rangle-implies-a-is-of-the-form-lambda-i-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown