$int_{0}^{pi}frac{sin^2(x)}{a+cos(x)},dx$












0












$begingroup$


I have been trying to solve the integral below using contour integration.
$$int_{0}^{pi}frac{sin^2(x)}{a+cos(x)}dx, quad a>1.$$



I'd appreciate to see how you would solve it, since the fact that it goes to only $pi$ and not to $2pi$ gives me some complications when solving for the residues, after using the variable change $y=2x$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
    $endgroup$
    – Robert Israel
    Jan 3 at 16:33










  • $begingroup$
    Oh true, ill give that a try. Thanks
    $endgroup$
    – Sam
    Jan 3 at 16:39










  • $begingroup$
    Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 16:42
















0












$begingroup$


I have been trying to solve the integral below using contour integration.
$$int_{0}^{pi}frac{sin^2(x)}{a+cos(x)}dx, quad a>1.$$



I'd appreciate to see how you would solve it, since the fact that it goes to only $pi$ and not to $2pi$ gives me some complications when solving for the residues, after using the variable change $y=2x$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
    $endgroup$
    – Robert Israel
    Jan 3 at 16:33










  • $begingroup$
    Oh true, ill give that a try. Thanks
    $endgroup$
    – Sam
    Jan 3 at 16:39










  • $begingroup$
    Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 16:42














0












0








0


1



$begingroup$


I have been trying to solve the integral below using contour integration.
$$int_{0}^{pi}frac{sin^2(x)}{a+cos(x)}dx, quad a>1.$$



I'd appreciate to see how you would solve it, since the fact that it goes to only $pi$ and not to $2pi$ gives me some complications when solving for the residues, after using the variable change $y=2x$.










share|cite|improve this question











$endgroup$




I have been trying to solve the integral below using contour integration.
$$int_{0}^{pi}frac{sin^2(x)}{a+cos(x)}dx, quad a>1.$$



I'd appreciate to see how you would solve it, since the fact that it goes to only $pi$ and not to $2pi$ gives me some complications when solving for the residues, after using the variable change $y=2x$.







complex-analysis contour-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 18:36









Bernard

122k740116




122k740116










asked Jan 3 at 16:32









SamSam

394114




394114








  • 1




    $begingroup$
    I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
    $endgroup$
    – Robert Israel
    Jan 3 at 16:33










  • $begingroup$
    Oh true, ill give that a try. Thanks
    $endgroup$
    – Sam
    Jan 3 at 16:39










  • $begingroup$
    Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 16:42














  • 1




    $begingroup$
    I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
    $endgroup$
    – Robert Israel
    Jan 3 at 16:33










  • $begingroup$
    Oh true, ill give that a try. Thanks
    $endgroup$
    – Sam
    Jan 3 at 16:39










  • $begingroup$
    Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 16:42








1




1




$begingroup$
I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
$endgroup$
– Robert Israel
Jan 3 at 16:33




$begingroup$
I presume you mean $dx$, not $dt$. Note that the integrand is an even function, thus you can integrate from $-pi$ to $pi$ and divide by $2$.
$endgroup$
– Robert Israel
Jan 3 at 16:33












$begingroup$
Oh true, ill give that a try. Thanks
$endgroup$
– Sam
Jan 3 at 16:39




$begingroup$
Oh true, ill give that a try. Thanks
$endgroup$
– Sam
Jan 3 at 16:39












$begingroup$
Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 16:42




$begingroup$
Use this substitution de.wikipedia.org/wiki/Weierstraß-Substitution
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 16:42










1 Answer
1






active

oldest

votes


















3












$begingroup$

The chances of me saying this were high: let us avoid contour integration.

By symmetry
$$ int_{0}^{pi}frac{sin^2theta}{a+costheta},dtheta = int_{0}^{pi/2}sin^2(theta)left[frac{1}{a+costheta}+frac{1}{a-costheta}right]dtheta$$
equals
$$ 2aint_{0}^{pi/2}frac{sin^2theta}{a^2-cos^2theta},dthetastackrel{thetamapstoarctan t}{=}2aint_{0}^{+infty}frac{dt}{(1+t^2)(a^2+(a^2-1)t^2)} $$
or
$$ frac{pi}{a+sqrt{a^2-1}} $$
by partial fraction decomposition.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060749%2fint-0-pi-frac-sin2xa-cosx-dx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The chances of me saying this were high: let us avoid contour integration.

    By symmetry
    $$ int_{0}^{pi}frac{sin^2theta}{a+costheta},dtheta = int_{0}^{pi/2}sin^2(theta)left[frac{1}{a+costheta}+frac{1}{a-costheta}right]dtheta$$
    equals
    $$ 2aint_{0}^{pi/2}frac{sin^2theta}{a^2-cos^2theta},dthetastackrel{thetamapstoarctan t}{=}2aint_{0}^{+infty}frac{dt}{(1+t^2)(a^2+(a^2-1)t^2)} $$
    or
    $$ frac{pi}{a+sqrt{a^2-1}} $$
    by partial fraction decomposition.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      The chances of me saying this were high: let us avoid contour integration.

      By symmetry
      $$ int_{0}^{pi}frac{sin^2theta}{a+costheta},dtheta = int_{0}^{pi/2}sin^2(theta)left[frac{1}{a+costheta}+frac{1}{a-costheta}right]dtheta$$
      equals
      $$ 2aint_{0}^{pi/2}frac{sin^2theta}{a^2-cos^2theta},dthetastackrel{thetamapstoarctan t}{=}2aint_{0}^{+infty}frac{dt}{(1+t^2)(a^2+(a^2-1)t^2)} $$
      or
      $$ frac{pi}{a+sqrt{a^2-1}} $$
      by partial fraction decomposition.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        The chances of me saying this were high: let us avoid contour integration.

        By symmetry
        $$ int_{0}^{pi}frac{sin^2theta}{a+costheta},dtheta = int_{0}^{pi/2}sin^2(theta)left[frac{1}{a+costheta}+frac{1}{a-costheta}right]dtheta$$
        equals
        $$ 2aint_{0}^{pi/2}frac{sin^2theta}{a^2-cos^2theta},dthetastackrel{thetamapstoarctan t}{=}2aint_{0}^{+infty}frac{dt}{(1+t^2)(a^2+(a^2-1)t^2)} $$
        or
        $$ frac{pi}{a+sqrt{a^2-1}} $$
        by partial fraction decomposition.






        share|cite|improve this answer









        $endgroup$



        The chances of me saying this were high: let us avoid contour integration.

        By symmetry
        $$ int_{0}^{pi}frac{sin^2theta}{a+costheta},dtheta = int_{0}^{pi/2}sin^2(theta)left[frac{1}{a+costheta}+frac{1}{a-costheta}right]dtheta$$
        equals
        $$ 2aint_{0}^{pi/2}frac{sin^2theta}{a^2-cos^2theta},dthetastackrel{thetamapstoarctan t}{=}2aint_{0}^{+infty}frac{dt}{(1+t^2)(a^2+(a^2-1)t^2)} $$
        or
        $$ frac{pi}{a+sqrt{a^2-1}} $$
        by partial fraction decomposition.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 16:51









        Jack D'AurizioJack D'Aurizio

        290k33283664




        290k33283664






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060749%2fint-0-pi-frac-sin2xa-cosx-dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei