Transition matrix generated by throwing 5 dice
$begingroup$
You throw five dice and set aside those dice that show sixes. Throw the
remaining dice and then again set aside the sixes. Continue until you
get all sixes. Exhibit the transition matrix for the associated Markov
chain, where $X_n$ is the number of sixes after $n$ throws.
I figured that the matrix should have $6$ states, that is state space $S={0,1,2,3,4,5}.$ Just by thinking about the first entry, $P_{00}$ we can think "starting with $0$ sixes, what is the probability that on the first throw, we throw $0$ sixes?". To do that, we simply need to throw each die with probability $5/6$, that is $P_{00}=(5/6)^5approx 0.4018$, which is correct.
Same reasoning for $P_{01}$ gives $P_{01}=(1/6)^1cdot (5/6)^4approx 0.08037.$ This is incorrect, for the correct answer here one should apparently multiply the answer with 5. Why? Why did we not need to do that in $P_{00}?$
The general matrix element is given by
$$P_{ij}={5-ichoose j-i}left(frac{1}{6}right)^{j-i}left(frac{5}{6}right)^{5-j}, quad forall quad 0leq i,jleq 5. tag{1}$$
I'm trying to build this formula step by step, intuitivly, but I fail to understand the binomial. Can someone give me an explanation on how to construct $(1)?$
probability probability-theory
$endgroup$
add a comment |
$begingroup$
You throw five dice and set aside those dice that show sixes. Throw the
remaining dice and then again set aside the sixes. Continue until you
get all sixes. Exhibit the transition matrix for the associated Markov
chain, where $X_n$ is the number of sixes after $n$ throws.
I figured that the matrix should have $6$ states, that is state space $S={0,1,2,3,4,5}.$ Just by thinking about the first entry, $P_{00}$ we can think "starting with $0$ sixes, what is the probability that on the first throw, we throw $0$ sixes?". To do that, we simply need to throw each die with probability $5/6$, that is $P_{00}=(5/6)^5approx 0.4018$, which is correct.
Same reasoning for $P_{01}$ gives $P_{01}=(1/6)^1cdot (5/6)^4approx 0.08037.$ This is incorrect, for the correct answer here one should apparently multiply the answer with 5. Why? Why did we not need to do that in $P_{00}?$
The general matrix element is given by
$$P_{ij}={5-ichoose j-i}left(frac{1}{6}right)^{j-i}left(frac{5}{6}right)^{5-j}, quad forall quad 0leq i,jleq 5. tag{1}$$
I'm trying to build this formula step by step, intuitivly, but I fail to understand the binomial. Can someone give me an explanation on how to construct $(1)?$
probability probability-theory
$endgroup$
1
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35
add a comment |
$begingroup$
You throw five dice and set aside those dice that show sixes. Throw the
remaining dice and then again set aside the sixes. Continue until you
get all sixes. Exhibit the transition matrix for the associated Markov
chain, where $X_n$ is the number of sixes after $n$ throws.
I figured that the matrix should have $6$ states, that is state space $S={0,1,2,3,4,5}.$ Just by thinking about the first entry, $P_{00}$ we can think "starting with $0$ sixes, what is the probability that on the first throw, we throw $0$ sixes?". To do that, we simply need to throw each die with probability $5/6$, that is $P_{00}=(5/6)^5approx 0.4018$, which is correct.
Same reasoning for $P_{01}$ gives $P_{01}=(1/6)^1cdot (5/6)^4approx 0.08037.$ This is incorrect, for the correct answer here one should apparently multiply the answer with 5. Why? Why did we not need to do that in $P_{00}?$
The general matrix element is given by
$$P_{ij}={5-ichoose j-i}left(frac{1}{6}right)^{j-i}left(frac{5}{6}right)^{5-j}, quad forall quad 0leq i,jleq 5. tag{1}$$
I'm trying to build this formula step by step, intuitivly, but I fail to understand the binomial. Can someone give me an explanation on how to construct $(1)?$
probability probability-theory
$endgroup$
You throw five dice and set aside those dice that show sixes. Throw the
remaining dice and then again set aside the sixes. Continue until you
get all sixes. Exhibit the transition matrix for the associated Markov
chain, where $X_n$ is the number of sixes after $n$ throws.
I figured that the matrix should have $6$ states, that is state space $S={0,1,2,3,4,5}.$ Just by thinking about the first entry, $P_{00}$ we can think "starting with $0$ sixes, what is the probability that on the first throw, we throw $0$ sixes?". To do that, we simply need to throw each die with probability $5/6$, that is $P_{00}=(5/6)^5approx 0.4018$, which is correct.
Same reasoning for $P_{01}$ gives $P_{01}=(1/6)^1cdot (5/6)^4approx 0.08037.$ This is incorrect, for the correct answer here one should apparently multiply the answer with 5. Why? Why did we not need to do that in $P_{00}?$
The general matrix element is given by
$$P_{ij}={5-ichoose j-i}left(frac{1}{6}right)^{j-i}left(frac{5}{6}right)^{5-j}, quad forall quad 0leq i,jleq 5. tag{1}$$
I'm trying to build this formula step by step, intuitivly, but I fail to understand the binomial. Can someone give me an explanation on how to construct $(1)?$
probability probability-theory
probability probability-theory
edited Jan 3 at 17:47
Parseval
asked Jan 3 at 15:01
ParsevalParseval
2,9571719
2,9571719
1
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35
add a comment |
1
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35
1
1
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Look at the case for just two dice: then you have a transition matrix where $X_n in {0, 1, 2}$. What is the dimension of this matrix? Then if $X_n = 0$, what is the chance that $X_{n+1} = 0$? What kind of outcomes correspond to such an event? Similarly, what is the chance that $X_{n+1} = 2$ if $X_n = 0$? Finally, based on these previous results, what is the chance that $X_{n+1} = 1$ if $X_n = 0$?
Then do the same for $X_n = 1$: Is it possible that $X_{n+1} = 0$ if $X_n = 1$?
Finally, consider $X_n = 2$. Is this an absorbing state?
If you answer these correctly, then think about how this generalizes to more than two dice.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060631%2ftransition-matrix-generated-by-throwing-5-dice%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Look at the case for just two dice: then you have a transition matrix where $X_n in {0, 1, 2}$. What is the dimension of this matrix? Then if $X_n = 0$, what is the chance that $X_{n+1} = 0$? What kind of outcomes correspond to such an event? Similarly, what is the chance that $X_{n+1} = 2$ if $X_n = 0$? Finally, based on these previous results, what is the chance that $X_{n+1} = 1$ if $X_n = 0$?
Then do the same for $X_n = 1$: Is it possible that $X_{n+1} = 0$ if $X_n = 1$?
Finally, consider $X_n = 2$. Is this an absorbing state?
If you answer these correctly, then think about how this generalizes to more than two dice.
$endgroup$
add a comment |
$begingroup$
Look at the case for just two dice: then you have a transition matrix where $X_n in {0, 1, 2}$. What is the dimension of this matrix? Then if $X_n = 0$, what is the chance that $X_{n+1} = 0$? What kind of outcomes correspond to such an event? Similarly, what is the chance that $X_{n+1} = 2$ if $X_n = 0$? Finally, based on these previous results, what is the chance that $X_{n+1} = 1$ if $X_n = 0$?
Then do the same for $X_n = 1$: Is it possible that $X_{n+1} = 0$ if $X_n = 1$?
Finally, consider $X_n = 2$. Is this an absorbing state?
If you answer these correctly, then think about how this generalizes to more than two dice.
$endgroup$
add a comment |
$begingroup$
Look at the case for just two dice: then you have a transition matrix where $X_n in {0, 1, 2}$. What is the dimension of this matrix? Then if $X_n = 0$, what is the chance that $X_{n+1} = 0$? What kind of outcomes correspond to such an event? Similarly, what is the chance that $X_{n+1} = 2$ if $X_n = 0$? Finally, based on these previous results, what is the chance that $X_{n+1} = 1$ if $X_n = 0$?
Then do the same for $X_n = 1$: Is it possible that $X_{n+1} = 0$ if $X_n = 1$?
Finally, consider $X_n = 2$. Is this an absorbing state?
If you answer these correctly, then think about how this generalizes to more than two dice.
$endgroup$
Look at the case for just two dice: then you have a transition matrix where $X_n in {0, 1, 2}$. What is the dimension of this matrix? Then if $X_n = 0$, what is the chance that $X_{n+1} = 0$? What kind of outcomes correspond to such an event? Similarly, what is the chance that $X_{n+1} = 2$ if $X_n = 0$? Finally, based on these previous results, what is the chance that $X_{n+1} = 1$ if $X_n = 0$?
Then do the same for $X_n = 1$: Is it possible that $X_{n+1} = 0$ if $X_n = 1$?
Finally, consider $X_n = 2$. Is this an absorbing state?
If you answer these correctly, then think about how this generalizes to more than two dice.
answered Jan 4 at 1:05
heropupheropup
64.1k762102
64.1k762102
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060631%2ftransition-matrix-generated-by-throwing-5-dice%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The $P_{01}$ that you’ve computed is the probability that a specific die shows a six. That one die could be any one of the five dice, though, so you’ve undercounted.
$endgroup$
– amd
Jan 3 at 21:35