Calculate the line integral on the negatively oriented unit circumference (like the hands of the clock) under...
up vote
0
down vote
favorite
Calculate the line integral on the negatively oriented unit circumference (like the hands of the clock) under the $F(x,y)=(e^x+x^2y,e^y-xy^2)$ field
I have thought to do the following to solve this:
$int_{C'}Fcdot dr=int_{-C}Fcdot dr=-int_CFcdot dr$, where $C$ is a positively oriented curve.
But $int_CFcdot dr=intint_D(frac{partial Q}{partial x}-frac{partial P}{partial y})dA=intint_D(-y^2-x^2)dA=-intint_D(x^2+y^2)dA=-int_{0}^{2pi}int_{0}^{1}r^3drdtheta=-int_{0}^{2pi}1/4dtheta=-2pi/4=-pi/2$.
Then $int_{C'}Fcdot dr=pi/2$
Is this fine? Thank you.
calculus integration multivariable-calculus greens-theorem
add a comment |
up vote
0
down vote
favorite
Calculate the line integral on the negatively oriented unit circumference (like the hands of the clock) under the $F(x,y)=(e^x+x^2y,e^y-xy^2)$ field
I have thought to do the following to solve this:
$int_{C'}Fcdot dr=int_{-C}Fcdot dr=-int_CFcdot dr$, where $C$ is a positively oriented curve.
But $int_CFcdot dr=intint_D(frac{partial Q}{partial x}-frac{partial P}{partial y})dA=intint_D(-y^2-x^2)dA=-intint_D(x^2+y^2)dA=-int_{0}^{2pi}int_{0}^{1}r^3drdtheta=-int_{0}^{2pi}1/4dtheta=-2pi/4=-pi/2$.
Then $int_{C'}Fcdot dr=pi/2$
Is this fine? Thank you.
calculus integration multivariable-calculus greens-theorem
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Calculate the line integral on the negatively oriented unit circumference (like the hands of the clock) under the $F(x,y)=(e^x+x^2y,e^y-xy^2)$ field
I have thought to do the following to solve this:
$int_{C'}Fcdot dr=int_{-C}Fcdot dr=-int_CFcdot dr$, where $C$ is a positively oriented curve.
But $int_CFcdot dr=intint_D(frac{partial Q}{partial x}-frac{partial P}{partial y})dA=intint_D(-y^2-x^2)dA=-intint_D(x^2+y^2)dA=-int_{0}^{2pi}int_{0}^{1}r^3drdtheta=-int_{0}^{2pi}1/4dtheta=-2pi/4=-pi/2$.
Then $int_{C'}Fcdot dr=pi/2$
Is this fine? Thank you.
calculus integration multivariable-calculus greens-theorem
Calculate the line integral on the negatively oriented unit circumference (like the hands of the clock) under the $F(x,y)=(e^x+x^2y,e^y-xy^2)$ field
I have thought to do the following to solve this:
$int_{C'}Fcdot dr=int_{-C}Fcdot dr=-int_CFcdot dr$, where $C$ is a positively oriented curve.
But $int_CFcdot dr=intint_D(frac{partial Q}{partial x}-frac{partial P}{partial y})dA=intint_D(-y^2-x^2)dA=-intint_D(x^2+y^2)dA=-int_{0}^{2pi}int_{0}^{1}r^3drdtheta=-int_{0}^{2pi}1/4dtheta=-2pi/4=-pi/2$.
Then $int_{C'}Fcdot dr=pi/2$
Is this fine? Thank you.
calculus integration multivariable-calculus greens-theorem
calculus integration multivariable-calculus greens-theorem
edited Nov 16 at 22:38
asked Nov 16 at 19:10
user402543
375212
375212
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15
add a comment |
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001529%2fcalculate-the-line-integral-on-the-negatively-oriented-unit-circumference-like%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
How do you include the positively oriented condition?
– Rafa Budría
Nov 17 at 8:46
Pues, cambio la curva por la misma pero orientada positivamente, esto sí se puede hacer así?
– user402543
Nov 17 at 19:56
Ah, yes, I didn't see that. Sorry.
– Rafa Budría
Nov 17 at 20:15