Product of a special $C^infty (Bbb R^d)$ and $C^2 (overline{Bbb R^d setminus B(0,R)})$ is $C^2 (Bbb R^d)$
up vote
0
down vote
favorite
Let $r > 0$. Suppose $fin C^2 (overline{Bbb R^d setminus B(0,r)})$, where $B(0,r) := { xin Bbb R^d : Vert x Vert leq r }$. This means $fin C^2 (Bbb R^d setminus B(0,r))$ and has a continuous extension to the boundary of $B(0,r)$. Take $R > r$. Now define
$$varphi (x) := begin{cases} exp left( frac{R^2 - Vert x Vert^2}{r^2 - Vert x Vert^2} right) &: r < Vert x Vert < R\ 1 &: Vert x Vert geq R \ 0 &: Vert x Vert leq r end{cases}$$
Does it hold that $varphi in C^infty(Bbb R^d)$ and $varphi f in C^2(Bbb R^d)$? And if so, how do I show it?
derivatives smooth-functions
add a comment |
up vote
0
down vote
favorite
Let $r > 0$. Suppose $fin C^2 (overline{Bbb R^d setminus B(0,r)})$, where $B(0,r) := { xin Bbb R^d : Vert x Vert leq r }$. This means $fin C^2 (Bbb R^d setminus B(0,r))$ and has a continuous extension to the boundary of $B(0,r)$. Take $R > r$. Now define
$$varphi (x) := begin{cases} exp left( frac{R^2 - Vert x Vert^2}{r^2 - Vert x Vert^2} right) &: r < Vert x Vert < R\ 1 &: Vert x Vert geq R \ 0 &: Vert x Vert leq r end{cases}$$
Does it hold that $varphi in C^infty(Bbb R^d)$ and $varphi f in C^2(Bbb R^d)$? And if so, how do I show it?
derivatives smooth-functions
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $r > 0$. Suppose $fin C^2 (overline{Bbb R^d setminus B(0,r)})$, where $B(0,r) := { xin Bbb R^d : Vert x Vert leq r }$. This means $fin C^2 (Bbb R^d setminus B(0,r))$ and has a continuous extension to the boundary of $B(0,r)$. Take $R > r$. Now define
$$varphi (x) := begin{cases} exp left( frac{R^2 - Vert x Vert^2}{r^2 - Vert x Vert^2} right) &: r < Vert x Vert < R\ 1 &: Vert x Vert geq R \ 0 &: Vert x Vert leq r end{cases}$$
Does it hold that $varphi in C^infty(Bbb R^d)$ and $varphi f in C^2(Bbb R^d)$? And if so, how do I show it?
derivatives smooth-functions
Let $r > 0$. Suppose $fin C^2 (overline{Bbb R^d setminus B(0,r)})$, where $B(0,r) := { xin Bbb R^d : Vert x Vert leq r }$. This means $fin C^2 (Bbb R^d setminus B(0,r))$ and has a continuous extension to the boundary of $B(0,r)$. Take $R > r$. Now define
$$varphi (x) := begin{cases} exp left( frac{R^2 - Vert x Vert^2}{r^2 - Vert x Vert^2} right) &: r < Vert x Vert < R\ 1 &: Vert x Vert geq R \ 0 &: Vert x Vert leq r end{cases}$$
Does it hold that $varphi in C^infty(Bbb R^d)$ and $varphi f in C^2(Bbb R^d)$? And if so, how do I show it?
derivatives smooth-functions
derivatives smooth-functions
asked Nov 16 at 19:06
Falrach
1,494223
1,494223
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001525%2fproduct-of-a-special-c-infty-bbb-rd-and-c2-overline-bbb-rd-setminu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown