Gauge transformation of differential equations I











up vote
1
down vote

favorite












This is a follow-up question to Gauge transformation of differential equations. .
Let $y(x)$ be a solution to the following ODE:
begin{eqnarray}
y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
end{eqnarray}

Now define:
begin{equation}
g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
end{equation}

where
begin{equation}
r^{'}(x) + 1 - a_1(x) r(x)=0
end{equation}

Then:
begin{eqnarray}
&&g^{''}(x) + \
&&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
end{eqnarray}



In[7]:= 
Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
x0 =.;
r[x_] = Exp[Integrate[a1[x], x]] C[1] -
Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
Simplify[r'[x] + 1 - a1[x] r[x]]
g[x_] = (y[x] + r[x] y'[x])/(
r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
Collect[(g''[x] +
1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
3 Derivative[1][a0][x]^2)/a0[x]^2 + (
2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
x] :> -a1[x] y'[x] - a0[x] y[x],
Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
a0[x] y'[x]}, {y[x], y'[x]}, Simplify]

Out[9]= 0

Out[11]= 0


Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
begin{eqnarray}
a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
a_1(x)&=& frac{2}{x}\
Longrightarrow\
r(x)&=& frac{x^2}{x_0} +x
end{eqnarray}

then define:
begin{eqnarray}
{mathfrak P}_0&:=&x_0^2 x_2^2\
{mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
{mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
{mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
{mathfrak P}_4&=&-8
C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
{mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
{mathfrak P}_6&=&-8 C^2
end{eqnarray}

then we have:
begin{equation}
g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
end{equation}

Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
begin{eqnarray}
g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
end{eqnarray}



Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    This is a follow-up question to Gauge transformation of differential equations. .
    Let $y(x)$ be a solution to the following ODE:
    begin{eqnarray}
    y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
    end{eqnarray}

    Now define:
    begin{equation}
    g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
    end{equation}

    where
    begin{equation}
    r^{'}(x) + 1 - a_1(x) r(x)=0
    end{equation}

    Then:
    begin{eqnarray}
    &&g^{''}(x) + \
    &&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
    a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
    end{eqnarray}



    In[7]:= 
    Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
    x0 =.;
    r[x_] = Exp[Integrate[a1[x], x]] C[1] -
    Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
    Simplify[r'[x] + 1 - a1[x] r[x]]
    g[x_] = (y[x] + r[x] y'[x])/(
    r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
    Collect[(g''[x] +
    1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
    3 Derivative[1][a0][x]^2)/a0[x]^2 + (
    2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
    2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
    x] :> -a1[x] y'[x] - a0[x] y[x],
    Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
    a0[x] y'[x]}, {y[x], y'[x]}, Simplify]

    Out[9]= 0

    Out[11]= 0


    Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
    begin{eqnarray}
    a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
    a_1(x)&=& frac{2}{x}\
    Longrightarrow\
    r(x)&=& frac{x^2}{x_0} +x
    end{eqnarray}

    then define:
    begin{eqnarray}
    {mathfrak P}_0&:=&x_0^2 x_2^2\
    {mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
    {mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
    left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
    {mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
    {mathfrak P}_4&=&-8
    C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
    {mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
    {mathfrak P}_6&=&-8 C^2
    end{eqnarray}

    then we have:
    begin{equation}
    g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
    end{equation}

    Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
    begin{eqnarray}
    g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
    end{eqnarray}



    Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      This is a follow-up question to Gauge transformation of differential equations. .
      Let $y(x)$ be a solution to the following ODE:
      begin{eqnarray}
      y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
      end{eqnarray}

      Now define:
      begin{equation}
      g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
      end{equation}

      where
      begin{equation}
      r^{'}(x) + 1 - a_1(x) r(x)=0
      end{equation}

      Then:
      begin{eqnarray}
      &&g^{''}(x) + \
      &&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
      a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
      end{eqnarray}



      In[7]:= 
      Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
      x0 =.;
      r[x_] = Exp[Integrate[a1[x], x]] C[1] -
      Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
      Simplify[r'[x] + 1 - a1[x] r[x]]
      g[x_] = (y[x] + r[x] y'[x])/(
      r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
      Collect[(g''[x] +
      1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
      3 Derivative[1][a0][x]^2)/a0[x]^2 + (
      2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
      2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
      x] :> -a1[x] y'[x] - a0[x] y[x],
      Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
      a0[x] y'[x]}, {y[x], y'[x]}, Simplify]

      Out[9]= 0

      Out[11]= 0


      Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
      begin{eqnarray}
      a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
      a_1(x)&=& frac{2}{x}\
      Longrightarrow\
      r(x)&=& frac{x^2}{x_0} +x
      end{eqnarray}

      then define:
      begin{eqnarray}
      {mathfrak P}_0&:=&x_0^2 x_2^2\
      {mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
      {mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
      left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
      {mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
      {mathfrak P}_4&=&-8
      C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
      {mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
      {mathfrak P}_6&=&-8 C^2
      end{eqnarray}

      then we have:
      begin{equation}
      g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
      end{equation}

      Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
      begin{eqnarray}
      g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
      end{eqnarray}



      Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.










      share|cite|improve this question













      This is a follow-up question to Gauge transformation of differential equations. .
      Let $y(x)$ be a solution to the following ODE:
      begin{eqnarray}
      y^{''}(x) + a_1(x) y^{'}(x)+a_0(x) y(x)=0
      end{eqnarray}

      Now define:
      begin{equation}
      g(x):= frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)} exp(-1/2 int a_1(x) dx)}
      end{equation}

      where
      begin{equation}
      r^{'}(x) + 1 - a_1(x) r(x)=0
      end{equation}

      Then:
      begin{eqnarray}
      &&g^{''}(x) + \
      &&!!!!!!!!!!!!!!!!!! frac{1}{4} left(frac{2 a_0''(x)}{a_0(x)}+frac{a_0'(x) left(frac{4}{r(x)}-2 a_1(x)right)}{a_0(x)}-frac{3 a_0'(x)^2}{a_0(x)^2}+4 a_0(x)+2
      a_1'(x)+frac{8 a_1(x)}{r(x)}-a_1(x)^2-frac{8}{r(x)^2}right)g(x)=0
      end{eqnarray}



      In[7]:= 
      Clear[a0]; Clear[a1]; Clear[y]; Clear[r]; Clear[g]; Clear[m]; x =.;
      x0 =.;
      r[x_] = Exp[Integrate[a1[x], x]] C[1] -
      Exp[Integrate[a1[x], x]] Integrate[ Exp[-Integrate[a1[x], x]], x];
      Simplify[r'[x] + 1 - a1[x] r[x]]
      g[x_] = (y[x] + r[x] y'[x])/(
      r[x] Sqrt[a0[x]] Exp[-1/2 Integrate[a1[x], x]]);
      Collect[(g''[x] +
      1/4 (4 a0[x] + Derivative[1][a0][x]/a0[x] (4/r[x] - 2 a1[x]) - (
      3 Derivative[1][a0][x]^2)/a0[x]^2 + (
      2 (a0^[Prime][Prime])[x])/a0[x] - a1[x]^2 + (8 a1[x])/r[x] +
      2 Derivative[1][a1][x] - 8/r[x]^2) g[x]) //. {Derivative[2][y][
      x] :> -a1[x] y'[x] - a0[x] y[x],
      Derivative[3][y][x] :> -a1'[x] y'[x] - a1[x] y''[x] - a0'[x] y[x] -
      a0[x] y'[x]}, {y[x], y'[x]}, Simplify]

      Out[9]= 0

      Out[11]= 0


      Note that the result above can be used to generate ODEs whose solutions are known. For example let us take $j=1$ and $B=C x_1$, $A=C x_1/x_2$ and :
      begin{eqnarray}
      a_0(x)&=& (B C - A D)^2 frac{x^{j-1}}{4(B+A x)^2 (B-D+(A-C) x)^2(D+C x)^2}\
      a_1(x)&=& frac{2}{x}\
      Longrightarrow\
      r(x)&=& frac{x^2}{x_0} +x
      end{eqnarray}

      then define:
      begin{eqnarray}
      {mathfrak P}_0&:=&x_0^2 x_2^2\
      {mathfrak P}_1&:=&2 x_0 x_2 left(x_2-4 C^2 x_1 (x_0 (x_1+x_2)-x_1 x_2)right)\
      {mathfrak P}_2&:=&x_2^2-8 C^2 x_0 left(x_0
      left(x_1^2+5 x_1 x_2+x_2^2right)-x_1 x_2 (x_1+x_2)right)\
      {mathfrak P}_3&:=&-16 C^2 x_0 (2 x_0 (x_1+x_2)+x_1 x_2)\
      {mathfrak P}_4&=&-8
      C^2 left(3 x_0^2+3 x_0 (x_1+x_2)+x_1 x_2right)\
      {mathfrak P}_5&=&-8 C^2 (3 x_0+x_1+x_2)\
      {mathfrak P}_6&=&-8 C^2
      end{eqnarray}

      then we have:
      begin{equation}
      g(x):= xcdot frac{y(x)+ r(x) y^{'}(x)}{r(x) sqrt{a_0(x)}}
      end{equation}

      Since from my answer to Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients. we know that $y(x)$ is expressed through hypergeometric functions we automaticaly know the solution to the following rather complicated ODE:
      begin{eqnarray}
      g^{''}(x) + left( frac{sum_{j=0}^6 {mathfrak P}_j x^j}{4 C^2 x^2 (x+x_0)^2 (x+x_1)^2 (x+x_2)^2}right) g(x)=0
      end{eqnarray}



      Again my question in here would be find other cases where we can find close form solutions to ODEs which are too complicated to be handled using other methods.







      differential-equations special-functions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 at 19:11









      Przemo

      4,1171928




      4,1171928



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001530%2fgauge-transformation-of-differential-equations-i%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001530%2fgauge-transformation-of-differential-equations-i%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei