Domain of functions involving arcsine or arccosine











up vote
2
down vote

favorite












I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question
























  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    Nov 21 at 13:56















up vote
2
down vote

favorite












I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question
























  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    Nov 21 at 13:56













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question















I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...







functions trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 15:10









N. F. Taussig

43.1k93254




43.1k93254










asked Nov 21 at 13:54









weno

657




657












  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    Nov 21 at 13:56


















  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    Nov 21 at 13:56
















Use en.wikipedia.org/wiki/…
– lab bhattacharjee
Nov 21 at 13:56




Use en.wikipedia.org/wiki/…
– lab bhattacharjee
Nov 21 at 13:56










1 Answer
1






active

oldest

votes

















up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    Nov 21 at 15:03










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    Nov 22 at 13:07






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    Nov 22 at 13:09











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007759%2fdomain-of-functions-involving-arcsine-or-arccosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    Nov 21 at 15:03










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    Nov 22 at 13:07






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    Nov 22 at 13:09















up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    Nov 21 at 15:03










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    Nov 22 at 13:07






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    Nov 22 at 13:09













up vote
0
down vote










up vote
0
down vote









For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer














For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 23 at 6:44

























answered Nov 21 at 14:11









Fareed AF

41211




41211








  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    Nov 21 at 15:03










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    Nov 22 at 13:07






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    Nov 22 at 13:09














  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    Nov 21 at 15:03










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    Nov 22 at 13:07






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    Nov 22 at 13:09








2




2




But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
– Lubin
Nov 21 at 15:03




But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
– Lubin
Nov 21 at 15:03












The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
– N. F. Taussig
Nov 22 at 13:07




The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
– N. F. Taussig
Nov 22 at 13:07




1




1




Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
– N. F. Taussig
Nov 22 at 13:09




Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
– N. F. Taussig
Nov 22 at 13:09


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007759%2fdomain-of-functions-involving-arcsine-or-arccosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei