Find $k$ in Maclaurin series expansion of $frac{dy}{dx}=-frac{1}{2}+frac{1}{4}x+kx^2+…$ where...
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
add a comment |
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
sequences-and-series taylor-expansion
edited Nov 21 at 17:14
Robert Z
91.9k1058129
91.9k1058129
asked Nov 21 at 15:46
Henias
615
615
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
1
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
up vote
1
down vote
up vote
1
down vote
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
answered Nov 21 at 15:54
Dan Kent
237
237
add a comment |
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
edited Nov 21 at 16:08
answered Nov 21 at 15:56
Robert Z
91.9k1058129
91.9k1058129
add a comment |
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
answered Nov 21 at 19:24
Mostafa Ayaz
13.5k3836
13.5k3836
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 at 15:55