Is there a $gamma>1$ such that...
In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.
EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.
topological-vector-spaces
add a comment |
In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.
EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.
topological-vector-spaces
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20
add a comment |
In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.
EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.
topological-vector-spaces
In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.
EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.
topological-vector-spaces
topological-vector-spaces
edited Nov 29 '18 at 11:28
fjlkjlkjlkj
asked Nov 12 '18 at 11:02
fjlkjlkjlkjfjlkjlkjlkj
184
184
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20
add a comment |
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20
add a comment |
3 Answers
3
active
oldest
votes
By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$
we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}
Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$
Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$
whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}
From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}
In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$
Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
add a comment |
Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
> frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
= frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
= frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$
Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
geq frac{1}{p}left(frac{3}{2}right)^p. $$
Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.
For the best choice of $gamma$, numerical evidence suggests that
$$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$
is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From
$$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$
it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$
and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
add a comment |
Probaly too complex and almost non rigorous.
$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.
So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$ Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$ So, it seems that a lower bound of $gamma$ is around $1.6875$.
Edit
You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.
Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.
Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995177%2fis-there-a-gamma1-such-that-frac-binom4p2p-1-binom4p0-binom4p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$
we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}
Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$
Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$
whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}
From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}
In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$
Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
add a comment |
By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$
we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}
Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$
Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$
whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}
From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}
In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$
Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
add a comment |
By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$
we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}
Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$
Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$
whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}
From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}
In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$
Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}
By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$
we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}
Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$
Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$
whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}
From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}
In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$
Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}
answered Nov 12 '18 at 16:16
Calum GilhooleyCalum Gilhooley
4,142529
4,142529
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
add a comment |
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
Nice solution, for sure. $to +1$.
– Claude Leibovici
Nov 13 '18 at 3:11
add a comment |
Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
> frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
= frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
= frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$
Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
geq frac{1}{p}left(frac{3}{2}right)^p. $$
Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.
For the best choice of $gamma$, numerical evidence suggests that
$$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$
is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From
$$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$
it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$
and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
add a comment |
Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
> frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
= frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
= frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$
Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
geq frac{1}{p}left(frac{3}{2}right)^p. $$
Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.
For the best choice of $gamma$, numerical evidence suggests that
$$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$
is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From
$$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$
it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$
and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
add a comment |
Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
> frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
= frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
= frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$
Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
geq frac{1}{p}left(frac{3}{2}right)^p. $$
Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.
For the best choice of $gamma$, numerical evidence suggests that
$$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$
is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From
$$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$
it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$
and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.
Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
> frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
= frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
= frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$
Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
geq frac{1}{p}left(frac{3}{2}right)^p. $$
Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.
For the best choice of $gamma$, numerical evidence suggests that
$$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$
is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From
$$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$
it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have
$$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$
and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.
edited Nov 12 '18 at 18:27
answered Nov 12 '18 at 18:12
Sangchul LeeSangchul Lee
91.5k12164265
91.5k12164265
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
add a comment |
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
Nice solution, for sure.$to +1$.
– Claude Leibovici
Nov 13 '18 at 3:12
add a comment |
Probaly too complex and almost non rigorous.
$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.
So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$ Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$ So, it seems that a lower bound of $gamma$ is around $1.6875$.
Edit
You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.
Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.
Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$
add a comment |
Probaly too complex and almost non rigorous.
$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.
So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$ Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$ So, it seems that a lower bound of $gamma$ is around $1.6875$.
Edit
You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.
Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.
Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$
add a comment |
Probaly too complex and almost non rigorous.
$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.
So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$ Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$ So, it seems that a lower bound of $gamma$ is around $1.6875$.
Edit
You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.
Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.
Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$
Probaly too complex and almost non rigorous.
$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.
So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$ Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$ So, it seems that a lower bound of $gamma$ is around $1.6875$.
Edit
You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.
Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.
Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$
edited Nov 13 '18 at 3:46
answered Nov 12 '18 at 12:08
Claude LeiboviciClaude Leibovici
119k1157132
119k1157132
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995177%2fis-there-a-gamma1-such-that-frac-binom4p2p-1-binom4p0-binom4p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20