Is there a $gamma>1$ such that...












3














In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.



EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.










share|cite|improve this question
























  • I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
    – Claude Leibovici
    Nov 12 '18 at 13:20
















3














In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.



EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.










share|cite|improve this question
























  • I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
    – Claude Leibovici
    Nov 12 '18 at 13:20














3












3








3


1





In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.



EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.










share|cite|improve this question















In a proof of the Larman-Rogers conjecture (there is $gamma>1$ such that $chi(mathbb{R}^{d})>gamma^d) $ they used that there is a $gamma>1$ such that $frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+cdots+binom{4p}{p-1}}>gamma^{p}$. I do not see why this is true. I tried manipulating both parts of the fraction to get the desired result. I also tried to use Stirling's approximation but without success.



EDIT: using $(frac{n}{k})^k$ $geq$ $binom{n}{k}$ $geq$ $(frac{en}{k})^k$ seems to help a lot but it is still not getting quite right.







topological-vector-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 '18 at 11:28







fjlkjlkjlkj

















asked Nov 12 '18 at 11:02









fjlkjlkjlkjfjlkjlkjlkj

184




184












  • I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
    – Claude Leibovici
    Nov 12 '18 at 13:20


















  • I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
    – Claude Leibovici
    Nov 12 '18 at 13:20
















I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20




I repeated my calculations up to $p=100000$ (steps of $1000$) and I get exactly the same slope of $0.523248$ the exponential of which being $1.6875$.
– Claude Leibovici
Nov 12 '18 at 13:20










3 Answers
3






active

oldest

votes


















5














By induction on $n$, using Pascal's rule:
$$
binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
$$

we get, for $n > r geqslant 0$:
begin{equation}
tag{$*$}label{eq:id}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
end{equation}

Suppose:
$$
frac{r}{n - 1} leqslant frac{1}{4}.
$$

Then:
$$
frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
$$

whence:
begin{gather*}
binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
end{gather*}

From eqref{eq:id}, therefore:
begin{gather*}
binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
< 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
end{gather*}

In particular:
$$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
quad (p geqslant 1).
$$

Therefore:
begin{gather*}
frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
> frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
= frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
= 2left(frac{2p + 2}{p + 1}right)
left(frac{2p + 3}{p + 2}right)cdots
left(frac{3p}{2p - 1}right) \
geqslant 2left(frac{3}{2}right)^{p - 1}
geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
end{gather*}






share|cite|improve this answer





















  • Nice solution, for sure. $to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:11



















2
















  1. Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So



    $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
    > frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
    = frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
    = frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$



    Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,



    $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
    geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
    geq frac{1}{p}left(frac{3}{2}right)^p. $$



    Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.




  2. For the best choice of $gamma$, numerical evidence suggests that



    $$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$



    is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From



    $$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$



    it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have



    $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$



    and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.








share|cite|improve this answer























  • Nice solution, for sure.$to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:12



















2














Probaly too complex and almost non rigorous.



$$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.



So, let us consider
$$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
p;p+1;-1)}$$
Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
$$begin{array}{clclclclc}
text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
a & 0.551608 & 0.000208 & {0.551199,0.552017} \
b & 0.523248 & approx 0 &
{0.523248,0.523248} \
end{array}$$
So, it seems that a lower bound of $gamma$ is around $1.6875$.



Edit



You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.



Considering the first answer where appears
$$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
$$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.



Considering the second answer where appears
$$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
$$log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995177%2fis-there-a-gamma1-such-that-frac-binom4p2p-1-binom4p0-binom4p%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5














    By induction on $n$, using Pascal's rule:
    $$
    binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
    $$

    we get, for $n > r geqslant 0$:
    begin{equation}
    tag{$*$}label{eq:id}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
    end{equation}

    Suppose:
    $$
    frac{r}{n - 1} leqslant frac{1}{4}.
    $$

    Then:
    $$
    frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
    $$

    whence:
    begin{gather*}
    binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
    leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
    end{gather*}

    From eqref{eq:id}, therefore:
    begin{gather*}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
    < 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
    end{gather*}

    In particular:
    $$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
    quad (p geqslant 1).
    $$

    Therefore:
    begin{gather*}
    frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
    > frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
    = frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
    = 2left(frac{2p + 2}{p + 1}right)
    left(frac{2p + 3}{p + 2}right)cdots
    left(frac{3p}{2p - 1}right) \
    geqslant 2left(frac{3}{2}right)^{p - 1}
    geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
    end{gather*}






    share|cite|improve this answer





















    • Nice solution, for sure. $to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:11
















    5














    By induction on $n$, using Pascal's rule:
    $$
    binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
    $$

    we get, for $n > r geqslant 0$:
    begin{equation}
    tag{$*$}label{eq:id}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
    end{equation}

    Suppose:
    $$
    frac{r}{n - 1} leqslant frac{1}{4}.
    $$

    Then:
    $$
    frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
    $$

    whence:
    begin{gather*}
    binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
    leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
    end{gather*}

    From eqref{eq:id}, therefore:
    begin{gather*}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
    < 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
    end{gather*}

    In particular:
    $$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
    quad (p geqslant 1).
    $$

    Therefore:
    begin{gather*}
    frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
    > frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
    = frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
    = 2left(frac{2p + 2}{p + 1}right)
    left(frac{2p + 3}{p + 2}right)cdots
    left(frac{3p}{2p - 1}right) \
    geqslant 2left(frac{3}{2}right)^{p - 1}
    geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
    end{gather*}






    share|cite|improve this answer





















    • Nice solution, for sure. $to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:11














    5












    5








    5






    By induction on $n$, using Pascal's rule:
    $$
    binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
    $$

    we get, for $n > r geqslant 0$:
    begin{equation}
    tag{$*$}label{eq:id}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
    end{equation}

    Suppose:
    $$
    frac{r}{n - 1} leqslant frac{1}{4}.
    $$

    Then:
    $$
    frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
    $$

    whence:
    begin{gather*}
    binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
    leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
    end{gather*}

    From eqref{eq:id}, therefore:
    begin{gather*}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
    < 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
    end{gather*}

    In particular:
    $$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
    quad (p geqslant 1).
    $$

    Therefore:
    begin{gather*}
    frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
    > frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
    = frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
    = 2left(frac{2p + 2}{p + 1}right)
    left(frac{2p + 3}{p + 2}right)cdots
    left(frac{3p}{2p - 1}right) \
    geqslant 2left(frac{3}{2}right)^{p - 1}
    geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
    end{gather*}






    share|cite|improve this answer












    By induction on $n$, using Pascal's rule:
    $$
    binom{n}{r} = binom{n - 1}{r} + binom{n - 1}{r - 1} quad (n geqslant r geqslant 1),
    $$

    we get, for $n > r geqslant 0$:
    begin{equation}
    tag{$*$}label{eq:id}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} = binom{n - 1}{r} + 2binom{n - 2}{r - 1} + cdots + 2^{r - 1}binom{n - r}{1} + 2^r.
    end{equation}

    Suppose:
    $$
    frac{r}{n - 1} leqslant frac{1}{4}.
    $$

    Then:
    $$
    frac{r - k}{n - k - 1} leqslant frac{1}{4} quad (k = 0, 1, ldots, r),
    $$

    whence:
    begin{gather*}
    binom{n - k - 1}{r - k} = left(frac{r}{n - 1}right)left(frac{r - 1}{n - 2}right)cdotsleft(frac{r - k + 1}{n - k}right)binom{n - 1}{r} \
    leqslant 4^{-k}binom{n - 1}{r} quad (k = 0, 1, ldots, r).
    end{gather*}

    From eqref{eq:id}, therefore:
    begin{gather*}
    binom{n}{0} + binom{n}{1} + cdots + binom{n}{r} leqslant left(1 + 2^{-1} + cdots + 2^{-r+1} + 2^{-r}right)binom{n - 1}{r} \
    < 2binom{n - 1}{r} quad left(0 leqslant r leqslant leftlfloorfrac{n - 1}{4}rightrfloorright).
    end{gather*}

    In particular:
    $$binom{4p}{0} + binom{4p}{1} + cdots + binom{4p}{p - 1} < 2binom{4p - 1}{p - 1}
    quad (p geqslant 1).
    $$

    Therefore:
    begin{gather*}
    frac{binom{4p}{2p-1}}{binom{4p}{0}+binom{4p}{1}+…+binom{4p}{p-1}}
    > frac{binom{4p}{2p - 1}}{2binom{4p - 1}{p - 1}}
    = frac{2p(p - 1)!(3p)!}{(2p - 1)!(2p + 1)!} \
    = 2left(frac{2p + 2}{p + 1}right)
    left(frac{2p + 3}{p + 2}right)cdots
    left(frac{3p}{2p - 1}right) \
    geqslant 2left(frac{3}{2}right)^{p - 1}
    geqslant left(frac{3}{2}right)^pquad (p geqslant 1).
    end{gather*}







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 12 '18 at 16:16









    Calum GilhooleyCalum Gilhooley

    4,142529




    4,142529












    • Nice solution, for sure. $to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:11


















    • Nice solution, for sure. $to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:11
















    Nice solution, for sure. $to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:11




    Nice solution, for sure. $to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:11











    2
















    1. Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      > frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
      = frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
      = frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$



      Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
      geq frac{1}{p}left(frac{3}{2}right)^p. $$



      Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.




    2. For the best choice of $gamma$, numerical evidence suggests that



      $$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$



      is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From



      $$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$



      it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$



      and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.








    share|cite|improve this answer























    • Nice solution, for sure.$to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:12
















    2
















    1. Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      > frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
      = frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
      = frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$



      Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
      geq frac{1}{p}left(frac{3}{2}right)^p. $$



      Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.




    2. For the best choice of $gamma$, numerical evidence suggests that



      $$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$



      is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From



      $$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$



      it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$



      and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.








    share|cite|improve this answer























    • Nice solution, for sure.$to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:12














    2












    2








    2








    1. Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      > frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
      = frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
      = frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$



      Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
      geq frac{1}{p}left(frac{3}{2}right)^p. $$



      Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.




    2. For the best choice of $gamma$, numerical evidence suggests that



      $$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$



      is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From



      $$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$



      it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$



      and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.








    share|cite|improve this answer
















    1. Here is a modification of @Calum Gilhooley's solution. Notice that $k mapsto binom{4p}{k}$ is strictly increasing for $k in [0, 2p]$. So



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      > frac{binom{4p}{2p-1}}{pbinom{4p}{p-1}}
      = frac{1}{p}frac{(p-1)!(3p+1)!}{(2p-1)!(2p+1)!}
      = frac{1}{p} prod_{k=0}^{p-1} frac{2p+2+k}{p+k} $$



      Since $k mapsto frac{2p+2+k}{p+k}$ is decreasing in $k$,



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1}binom{4p}{k}}
      geq frac{1}{p} left( frac{3p+1}{2p-1} right)^p
      geq frac{1}{p}left(frac{3}{2}right)^p. $$



      Now it is easy to find $gamma > 1$ such that $frac{1}{p}left(frac{3}{2}right)^p geq gamma^p$.




    2. For the best choice of $gamma$, numerical evidence suggests that



      $$ alpha(p) := frac{1}{p}logleft( frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} right) $$



      is strictly decreasing in $p$. So the best possible choice will be $inf_{p > 0} alpha(p) = lim_{ptoinfty} alpha(p)$. From



      $$ frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha(p) leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right), $$



      it is easy to show that $lim_{ptoinfty}alpha(p) = log left(frac{27}{16}right)$, hence accepting the monotonicity of $alpha$, we have



      $$ frac{binom{4p}{2p-1}}{sum_{k=0}^{p-1} binom{4p}{k}} > left(frac{27}{16}right)^p $$



      and no $gamma > frac{27}{16}$ will satisfy the inequality for all $p > 0$.









    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Nov 12 '18 at 18:27

























    answered Nov 12 '18 at 18:12









    Sangchul LeeSangchul Lee

    91.5k12164265




    91.5k12164265












    • Nice solution, for sure.$to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:12


















    • Nice solution, for sure.$to +1$.
      – Claude Leibovici
      Nov 13 '18 at 3:12
















    Nice solution, for sure.$to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:12




    Nice solution, for sure.$to +1$.
    – Claude Leibovici
    Nov 13 '18 at 3:12











    2














    Probaly too complex and almost non rigorous.



    $$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.



    So, let us consider
    $$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
    p;p+1;-1)}$$
    Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
    $$begin{array}{clclclclc}
    text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
    a & 0.551608 & 0.000208 & {0.551199,0.552017} \
    b & 0.523248 & approx 0 &
    {0.523248,0.523248} \
    end{array}$$
    So, it seems that a lower bound of $gamma$ is around $1.6875$.



    Edit



    You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.



    Considering the first answer where appears
    $$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
    $$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.



    Considering the second answer where appears
    $$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
    $$log left(frac{27}{16}right)+frac{log left(frac{3
    sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
    sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$






    share|cite|improve this answer




























      2














      Probaly too complex and almost non rigorous.



      $$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.



      So, let us consider
      $$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
      p;p+1;-1)}$$
      Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
      $$begin{array}{clclclclc}
      text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
      a & 0.551608 & 0.000208 & {0.551199,0.552017} \
      b & 0.523248 & approx 0 &
      {0.523248,0.523248} \
      end{array}$$
      So, it seems that a lower bound of $gamma$ is around $1.6875$.



      Edit



      You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.



      Considering the first answer where appears
      $$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
      $$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.



      Considering the second answer where appears
      $$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
      $$log left(frac{27}{16}right)+frac{log left(frac{3
      sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
      sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$






      share|cite|improve this answer


























        2












        2








        2






        Probaly too complex and almost non rigorous.



        $$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.



        So, let us consider
        $$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
        p;p+1;-1)}$$
        Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
        $$begin{array}{clclclclc}
        text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
        a & 0.551608 & 0.000208 & {0.551199,0.552017} \
        b & 0.523248 & approx 0 &
        {0.523248,0.523248} \
        end{array}$$
        So, it seems that a lower bound of $gamma$ is around $1.6875$.



        Edit



        You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.



        Considering the first answer where appears
        $$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
        $$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.



        Considering the second answer where appears
        $$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
        $$log left(frac{27}{16}right)+frac{log left(frac{3
        sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
        sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$






        share|cite|improve this answer














        Probaly too complex and almost non rigorous.



        $$sum_{k=0}^{p-1} binom{4 p}{k}=16^p-binom{4 p}{p} , _2F_1(1,-3 p;p+1;-1)$$ where appears the Gaussian or ordinary hypergeometric function.



        So, let us consider
        $$y=frac{binom{4 p}{2 p-1}}{16^p-binom{4 p}{p} , _2F_1(1,-3
        p;p+1;-1)}$$
        Computing it, it seems that $log(y)$ is almost linear with respect to $p$. I generated values for $10 leq p leq 10000$ (stepsize equal to $10$) and a quick and dirty linear regression gave for $log(y)=a+b,p$
        $$begin{array}{clclclclc}
        text{} & text{Estimate} & text{Standard Error} & text{Confidence Interval} \
        a & 0.551608 & 0.000208 & {0.551199,0.552017} \
        b & 0.523248 & approx 0 &
        {0.523248,0.523248} \
        end{array}$$
        So, it seems that a lower bound of $gamma$ is around $1.6875$.



        Edit



        You have received two very elegant solutions from Calum Gilhooley and from Sangchul Lee.



        Considering the first answer where appears
        $$A=frac{2,p,(p - 1)!,(3p)!}{(2p - 1)!,(2p + 1)!}$$ using Stirling approximation, we have
        $$log(A)=frac{log (3)}{2}+ log left(frac{27}{16}right)p-frac{17}{36 p}+Oleft(frac{1}{p^2}right)$$ and $frac{log (3)}{2}approx 0.549306$ and $log left(frac{27}{16}right)approx 0.523248$ which I was unable to identify.



        Considering the second answer where appears
        $$frac{1}{p}logleft( frac{binom{4p}{2p-1}}{p binom{4p}{p-1}} right) leq alpha leq frac{1}{p}logleft( frac{binom{4p}{2p-1}}{binom{4p}{p-1}} right)$$ and doing the same
        $$log left(frac{27}{16}right)+frac{log left(frac{3
        sqrt{3}}{2}right)-log(p)}{p}+Oleft(frac{1}{p^2}right) leq log(alpha) leq log left(frac{27}{16}right)+frac{log left(frac{3
        sqrt{3}}{2}right)}{p}+Oleft(frac{1}{p^2}right) $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 13 '18 at 3:46

























        answered Nov 12 '18 at 12:08









        Claude LeiboviciClaude Leibovici

        119k1157132




        119k1157132






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995177%2fis-there-a-gamma1-such-that-frac-binom4p2p-1-binom4p0-binom4p%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei