Find $limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$
$begingroup$
Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$
This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$
and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$
and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get
$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$
I assume this is incorrect. Help/Corrections would be greatly appreciated.
real-analysis sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$
This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$
and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$
and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get
$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$
I assume this is incorrect. Help/Corrections would be greatly appreciated.
real-analysis sequences-and-series limits
$endgroup$
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54
add a comment |
$begingroup$
Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$
This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$
and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$
and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get
$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$
I assume this is incorrect. Help/Corrections would be greatly appreciated.
real-analysis sequences-and-series limits
$endgroup$
Find $$limlimits_{n to infty} sumlimits_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}left(frac{n pi}{k}right)$$
This is the first time that I am operating with $lim_{nto infty}lim_{k to infty}$ so I am unsure. My first idea would be to look at:
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$ where $n in mathbb N$ is constant.
$frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})leq frac{1}{k^{2}sqrt[k]{n}}leqfrac{1}{k^{2}sqrt{n}}$
and $sum_{k=1}^{infty}frac{1}{k^{2}sqrt{n}}=frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}$
and we know $sum_{k=1}^{infty}frac{1}{k^{2}} < infty$ and taking $n to infty$ we get
$lim_{nto infty}frac{1}{sqrt{n}}sum_{k=1}^{infty}frac{1}{k^{2}}=0=lim_{n to infty} sum_{k=1}^{infty}frac{1}{k^{2}sqrt[k]{n}}sin^{2}(frac{n pi}{k})$
I assume this is incorrect. Help/Corrections would be greatly appreciated.
real-analysis sequences-and-series limits
real-analysis sequences-and-series limits
edited Dec 3 '18 at 11:02
Did
247k23222458
247k23222458
asked Dec 3 '18 at 9:41
SABOYSABOY
567311
567311
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54
add a comment |
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In your manipulations there is a mistake: note that for $kge 2$
$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$
A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.
Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently
$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$
Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023840%2ffind-lim-limits-n-to-infty-sum-limits-k-1-infty-frac1k2-sqrtk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In your manipulations there is a mistake: note that for $kge 2$
$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$
A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.
Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently
$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$
Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.
$endgroup$
add a comment |
$begingroup$
In your manipulations there is a mistake: note that for $kge 2$
$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$
A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.
Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently
$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$
Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.
$endgroup$
add a comment |
$begingroup$
In your manipulations there is a mistake: note that for $kge 2$
$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$
A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.
Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently
$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$
Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.
$endgroup$
In your manipulations there is a mistake: note that for $kge 2$
$$sqrt{n}gesqrt[k]{n}impliesfrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt n}tag1$$
A way to solve this limit is using the Weierstrass M-test and the properties of uniform convergence of series.
Note that for all $kinBbb N_{ge 1}$ and $xge 1$ it holds that $sqrt[k]{x}ge 1$, consequently
$$frac1{k^2}gefrac1{k^2sqrt[k]{n}}gefrac1{k^2sqrt[k]{n}}sin^2(n pi/k)tag2$$
Hence by the M-test the series $sum_{k=1}^infty f_k(x)$, for $f_k(x):=frac1{k^2sqrt[k]{x}}sin^2(x pi/k)$, converges absolutely and uniformly for $xge 1$, so we can exchange limit and summation sign to find that the limit that we want to evaluate is indeed zero.
edited Dec 3 '18 at 11:13
answered Dec 3 '18 at 10:38
MasacrosoMasacroso
13k41746
13k41746
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023840%2ffind-lim-limits-n-to-infty-sum-limits-k-1-infty-frac1k2-sqrtk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$cdots leqslant dfrac 1{k^2 sqrt n}$ holds for $k geqslant 2$, so it should be $$ frac 1n + frac 1{sqrt n}sum_2^infty frac 1{k^2} xrightarrow{n to +infty} 0.$$
$endgroup$
– xbh
Dec 3 '18 at 9:54