How to inverse a block diagonal matrix?
$begingroup$
Given a matrix $$x = begin{bmatrix}
40 & 0 & 0 & 0\
0 & 80 & 100 & 0 \
0 & 40 & 120 & 0 \
0 & 0 & 0 & 60end{bmatrix}$$
How to find the inverse of that matrix?
What I know: $det(x) = ac-bd$,
inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$
There is a lot of content online; however none of them has a specific numerical example.
matrices numerical-linear-algebra matrix-decomposition
$endgroup$
add a comment |
$begingroup$
Given a matrix $$x = begin{bmatrix}
40 & 0 & 0 & 0\
0 & 80 & 100 & 0 \
0 & 40 & 120 & 0 \
0 & 0 & 0 & 60end{bmatrix}$$
How to find the inverse of that matrix?
What I know: $det(x) = ac-bd$,
inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$
There is a lot of content online; however none of them has a specific numerical example.
matrices numerical-linear-algebra matrix-decomposition
$endgroup$
add a comment |
$begingroup$
Given a matrix $$x = begin{bmatrix}
40 & 0 & 0 & 0\
0 & 80 & 100 & 0 \
0 & 40 & 120 & 0 \
0 & 0 & 0 & 60end{bmatrix}$$
How to find the inverse of that matrix?
What I know: $det(x) = ac-bd$,
inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$
There is a lot of content online; however none of them has a specific numerical example.
matrices numerical-linear-algebra matrix-decomposition
$endgroup$
Given a matrix $$x = begin{bmatrix}
40 & 0 & 0 & 0\
0 & 80 & 100 & 0 \
0 & 40 & 120 & 0 \
0 & 0 & 0 & 60end{bmatrix}$$
How to find the inverse of that matrix?
What I know: $det(x) = ac-bd$,
inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$
There is a lot of content online; however none of them has a specific numerical example.
matrices numerical-linear-algebra matrix-decomposition
matrices numerical-linear-algebra matrix-decomposition
edited Dec 3 '18 at 13:12
amWhy
1
1
asked Dec 3 '18 at 12:22
JayDoughJayDough
12
12
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Block diagonal matrices can be inverted block by block. See also [*].
In your example:
$$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
= begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
end{bmatrix}.
$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Guide:
If you have a matrix of the form of
$$diag(D_1, D_2, D_3),$$
where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$
You should verify this.
In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023983%2fhow-to-inverse-a-block-diagonal-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Block diagonal matrices can be inverted block by block. See also [*].
In your example:
$$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
= begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
end{bmatrix}.
$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Block diagonal matrices can be inverted block by block. See also [*].
In your example:
$$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
= begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
end{bmatrix}.
$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Block diagonal matrices can be inverted block by block. See also [*].
In your example:
$$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
= begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
end{bmatrix}.
$$
Can you take it from here?
$endgroup$
Block diagonal matrices can be inverted block by block. See also [*].
In your example:
$$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
= begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
end{bmatrix}.
$$
Can you take it from here?
edited Dec 3 '18 at 13:22
answered Dec 3 '18 at 12:39
FlorianFlorian
1,3661721
1,3661721
add a comment |
add a comment |
$begingroup$
Guide:
If you have a matrix of the form of
$$diag(D_1, D_2, D_3),$$
where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$
You should verify this.
In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.
$endgroup$
add a comment |
$begingroup$
Guide:
If you have a matrix of the form of
$$diag(D_1, D_2, D_3),$$
where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$
You should verify this.
In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.
$endgroup$
add a comment |
$begingroup$
Guide:
If you have a matrix of the form of
$$diag(D_1, D_2, D_3),$$
where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$
You should verify this.
In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.
$endgroup$
Guide:
If you have a matrix of the form of
$$diag(D_1, D_2, D_3),$$
where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$
You should verify this.
In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.
answered Dec 3 '18 at 12:39
Siong Thye GohSiong Thye Goh
100k1465117
100k1465117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023983%2fhow-to-inverse-a-block-diagonal-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown