How to inverse a block diagonal matrix?












-1












$begingroup$


Given a matrix $$x = begin{bmatrix}
40 & 0 & 0 & 0\
0 & 80 & 100 & 0 \
0 & 40 & 120 & 0 \
0 & 0 & 0 & 60end{bmatrix}$$



How to find the inverse of that matrix?
What I know: $det(x) = ac-bd$,
inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$



There is a lot of content online; however none of them has a specific numerical example.










share|cite|improve this question











$endgroup$

















    -1












    $begingroup$


    Given a matrix $$x = begin{bmatrix}
    40 & 0 & 0 & 0\
    0 & 80 & 100 & 0 \
    0 & 40 & 120 & 0 \
    0 & 0 & 0 & 60end{bmatrix}$$



    How to find the inverse of that matrix?
    What I know: $det(x) = ac-bd$,
    inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$



    There is a lot of content online; however none of them has a specific numerical example.










    share|cite|improve this question











    $endgroup$















      -1












      -1








      -1





      $begingroup$


      Given a matrix $$x = begin{bmatrix}
      40 & 0 & 0 & 0\
      0 & 80 & 100 & 0 \
      0 & 40 & 120 & 0 \
      0 & 0 & 0 & 60end{bmatrix}$$



      How to find the inverse of that matrix?
      What I know: $det(x) = ac-bd$,
      inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$



      There is a lot of content online; however none of them has a specific numerical example.










      share|cite|improve this question











      $endgroup$




      Given a matrix $$x = begin{bmatrix}
      40 & 0 & 0 & 0\
      0 & 80 & 100 & 0 \
      0 & 40 & 120 & 0 \
      0 & 0 & 0 & 60end{bmatrix}$$



      How to find the inverse of that matrix?
      What I know: $det(x) = ac-bd$,
      inverse of a 2x2 matrix: $$x^{-1} = frac{1}{det(x)}cdot begin{bmatrix} d &-b\ -c &aend{bmatrix}.$$



      There is a lot of content online; however none of them has a specific numerical example.







      matrices numerical-linear-algebra matrix-decomposition






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 13:12









      amWhy

      1




      1










      asked Dec 3 '18 at 12:22









      JayDoughJayDough

      12




      12






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Block diagonal matrices can be inverted block by block. See also [*].



          In your example:



          $$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
          = begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
          0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
          end{bmatrix}.
          $$



          Can you take it from here?






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Guide:



            If you have a matrix of the form of



            $$diag(D_1, D_2, D_3),$$



            where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$



            You should verify this.



            In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023983%2fhow-to-inverse-a-block-diagonal-matrix%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Block diagonal matrices can be inverted block by block. See also [*].



              In your example:



              $$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
              = begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
              0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
              end{bmatrix}.
              $$



              Can you take it from here?






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Block diagonal matrices can be inverted block by block. See also [*].



                In your example:



                $$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
                = begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
                0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
                end{bmatrix}.
                $$



                Can you take it from here?






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Block diagonal matrices can be inverted block by block. See also [*].



                  In your example:



                  $$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
                  = begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
                  0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
                  end{bmatrix}.
                  $$



                  Can you take it from here?






                  share|cite|improve this answer











                  $endgroup$



                  Block diagonal matrices can be inverted block by block. See also [*].



                  In your example:



                  $$begin{bmatrix} 40 & 0 & 0 & 0 \ 0 & 80 & 100 & 0 \ 0 & 40 & 120 & 0 \ 0 & 0 & 0 & 60end{bmatrix}^{-1}
                  = begin{bmatrix} [40]^{-1} & begin{matrix} 0 quad & 0quad end{matrix} & 0 \ begin{matrix} 0 \ 0 end{matrix} & begin{bmatrix} 80 & 100 \ 40 & 120 end{bmatrix}^{-1} & begin{matrix} 0 \ 0 end{matrix} \
                  0 & begin{matrix} 0quad & 0quad end{matrix} & [60]^{-1}
                  end{bmatrix}.
                  $$



                  Can you take it from here?







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 3 '18 at 13:22

























                  answered Dec 3 '18 at 12:39









                  FlorianFlorian

                  1,3661721




                  1,3661721























                      0












                      $begingroup$

                      Guide:



                      If you have a matrix of the form of



                      $$diag(D_1, D_2, D_3),$$



                      where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$



                      You should verify this.



                      In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Guide:



                        If you have a matrix of the form of



                        $$diag(D_1, D_2, D_3),$$



                        where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$



                        You should verify this.



                        In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Guide:



                          If you have a matrix of the form of



                          $$diag(D_1, D_2, D_3),$$



                          where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$



                          You should verify this.



                          In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.






                          share|cite|improve this answer









                          $endgroup$



                          Guide:



                          If you have a matrix of the form of



                          $$diag(D_1, D_2, D_3),$$



                          where each block is invertible, then its inverse is $$diag(D_1^{-1},D_2^{-1}, D_3^{-1}).$$



                          You should verify this.



                          In your question $D_2$ is $2$ by $2$ and the other two blocks are scalar.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 3 '18 at 12:39









                          Siong Thye GohSiong Thye Goh

                          100k1465117




                          100k1465117






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023983%2fhow-to-inverse-a-block-diagonal-matrix%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei