Taylor expansion on Images which are warped
$begingroup$
I'm currently reading following paper: https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2001_2/baker_simon_2001_2.pdf
Here I struggle to follow the Taylor expansion from equation 2 to equation 3. I mean I know in general how Taylor expansion works, but in this case it is not clear to me.
Starting equation:
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} + Deltamathbf{p})) - mathit{T}(mathbf{x})]^2
$$
Taylor expansion
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} )) + nablamathit{I}frac{partialmathbf{W}}{partialmathbf{p}}Deltamathbf{p} - mathit{T}(mathbf{x})]^2
$$
Maybe somebody of you has more experience and can elaborate little more on this?
taylor-expansion
$endgroup$
add a comment |
$begingroup$
I'm currently reading following paper: https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2001_2/baker_simon_2001_2.pdf
Here I struggle to follow the Taylor expansion from equation 2 to equation 3. I mean I know in general how Taylor expansion works, but in this case it is not clear to me.
Starting equation:
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} + Deltamathbf{p})) - mathit{T}(mathbf{x})]^2
$$
Taylor expansion
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} )) + nablamathit{I}frac{partialmathbf{W}}{partialmathbf{p}}Deltamathbf{p} - mathit{T}(mathbf{x})]^2
$$
Maybe somebody of you has more experience and can elaborate little more on this?
taylor-expansion
$endgroup$
add a comment |
$begingroup$
I'm currently reading following paper: https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2001_2/baker_simon_2001_2.pdf
Here I struggle to follow the Taylor expansion from equation 2 to equation 3. I mean I know in general how Taylor expansion works, but in this case it is not clear to me.
Starting equation:
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} + Deltamathbf{p})) - mathit{T}(mathbf{x})]^2
$$
Taylor expansion
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} )) + nablamathit{I}frac{partialmathbf{W}}{partialmathbf{p}}Deltamathbf{p} - mathit{T}(mathbf{x})]^2
$$
Maybe somebody of you has more experience and can elaborate little more on this?
taylor-expansion
$endgroup$
I'm currently reading following paper: https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2001_2/baker_simon_2001_2.pdf
Here I struggle to follow the Taylor expansion from equation 2 to equation 3. I mean I know in general how Taylor expansion works, but in this case it is not clear to me.
Starting equation:
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} + Deltamathbf{p})) - mathit{T}(mathbf{x})]^2
$$
Taylor expansion
$$
sum_{x} [ mathit{I}(mathbf{W}(mathbf{x};mathbf{p} )) + nablamathit{I}frac{partialmathbf{W}}{partialmathbf{p}}Deltamathbf{p} - mathit{T}(mathbf{x})]^2
$$
Maybe somebody of you has more experience and can elaborate little more on this?
taylor-expansion
taylor-expansion
asked Dec 1 '18 at 17:42
antibusantibus
1083
1083
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You just need to apply the expansion twice. First for ${bf W}$ up to first order in $Delta {bf p}$, we get
$$
{bf W}({bf x}; {bf p} + Delta {bf p}) approx {bf W}({bf x}; {bf p}) + frac{partial {bf W}}{partial {bf p}}Delta {bf p} equiv {bf W} + Delta{bf W}tag{1}
$$
Now for $I$ up to first order in $Delta {bf W}$,
$$
I({bf W} + Delta{bf W}) approx I({bf W}) + nabla I Delta{bf W} = I({bf W}) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p} tag{2}
$$
Putting everything together
$$
I({bf W}({bf x}; {bf p} + Delta {bf p})) approx I({bf W}({bf x}; {bf p})) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021613%2ftaylor-expansion-on-images-which-are-warped%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You just need to apply the expansion twice. First for ${bf W}$ up to first order in $Delta {bf p}$, we get
$$
{bf W}({bf x}; {bf p} + Delta {bf p}) approx {bf W}({bf x}; {bf p}) + frac{partial {bf W}}{partial {bf p}}Delta {bf p} equiv {bf W} + Delta{bf W}tag{1}
$$
Now for $I$ up to first order in $Delta {bf W}$,
$$
I({bf W} + Delta{bf W}) approx I({bf W}) + nabla I Delta{bf W} = I({bf W}) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p} tag{2}
$$
Putting everything together
$$
I({bf W}({bf x}; {bf p} + Delta {bf p})) approx I({bf W}({bf x}; {bf p})) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p}
$$
$endgroup$
add a comment |
$begingroup$
You just need to apply the expansion twice. First for ${bf W}$ up to first order in $Delta {bf p}$, we get
$$
{bf W}({bf x}; {bf p} + Delta {bf p}) approx {bf W}({bf x}; {bf p}) + frac{partial {bf W}}{partial {bf p}}Delta {bf p} equiv {bf W} + Delta{bf W}tag{1}
$$
Now for $I$ up to first order in $Delta {bf W}$,
$$
I({bf W} + Delta{bf W}) approx I({bf W}) + nabla I Delta{bf W} = I({bf W}) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p} tag{2}
$$
Putting everything together
$$
I({bf W}({bf x}; {bf p} + Delta {bf p})) approx I({bf W}({bf x}; {bf p})) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p}
$$
$endgroup$
add a comment |
$begingroup$
You just need to apply the expansion twice. First for ${bf W}$ up to first order in $Delta {bf p}$, we get
$$
{bf W}({bf x}; {bf p} + Delta {bf p}) approx {bf W}({bf x}; {bf p}) + frac{partial {bf W}}{partial {bf p}}Delta {bf p} equiv {bf W} + Delta{bf W}tag{1}
$$
Now for $I$ up to first order in $Delta {bf W}$,
$$
I({bf W} + Delta{bf W}) approx I({bf W}) + nabla I Delta{bf W} = I({bf W}) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p} tag{2}
$$
Putting everything together
$$
I({bf W}({bf x}; {bf p} + Delta {bf p})) approx I({bf W}({bf x}; {bf p})) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p}
$$
$endgroup$
You just need to apply the expansion twice. First for ${bf W}$ up to first order in $Delta {bf p}$, we get
$$
{bf W}({bf x}; {bf p} + Delta {bf p}) approx {bf W}({bf x}; {bf p}) + frac{partial {bf W}}{partial {bf p}}Delta {bf p} equiv {bf W} + Delta{bf W}tag{1}
$$
Now for $I$ up to first order in $Delta {bf W}$,
$$
I({bf W} + Delta{bf W}) approx I({bf W}) + nabla I Delta{bf W} = I({bf W}) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p} tag{2}
$$
Putting everything together
$$
I({bf W}({bf x}; {bf p} + Delta {bf p})) approx I({bf W}({bf x}; {bf p})) + nabla I frac{partial {bf W}}{partial {bf p}}Delta {bf p}
$$
answered Dec 1 '18 at 21:17
caveraccaverac
14.2k21130
14.2k21130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021613%2ftaylor-expansion-on-images-which-are-warped%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown