Uniqueness of limit of sequence and function












0












$begingroup$


I was doing both proof of uniqueness of limit of a sequence and function and i don't understand why in sequence we take $nu=max{nu',nu''}$ and in function we take $delta=min{delta',delta''}$



I hope it's clear without writing the whole proof of both theorems, thanks.



Let X,Y be metric spaces, $f:Ato Y$ a function and $l',l''in Y$



if $lim_{xto x_0}f(x)=l'$ and $lim_{xto x_0}f(x)=l'$ $implies l'=l''$



Proof.



$forallvarepsilon>0$ $exists delta'>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$



$forallvarepsilon>0$ $exists delta''>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l'')<varepsilon$



Let $delta=min{delta',delta''}$. So



$forallvarepsilon>0$ $exists delta>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$ $d_Y(f(x),l'')<varepsilon$



Then $forall>0$ $d_Y(l',l'')<2varepsilon$ then $l'=l''$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I was doing both proof of uniqueness of limit of a sequence and function and i don't understand why in sequence we take $nu=max{nu',nu''}$ and in function we take $delta=min{delta',delta''}$



    I hope it's clear without writing the whole proof of both theorems, thanks.



    Let X,Y be metric spaces, $f:Ato Y$ a function and $l',l''in Y$



    if $lim_{xto x_0}f(x)=l'$ and $lim_{xto x_0}f(x)=l'$ $implies l'=l''$



    Proof.



    $forallvarepsilon>0$ $exists delta'>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$



    $forallvarepsilon>0$ $exists delta''>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l'')<varepsilon$



    Let $delta=min{delta',delta''}$. So



    $forallvarepsilon>0$ $exists delta>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$ $d_Y(f(x),l'')<varepsilon$



    Then $forall>0$ $d_Y(l',l'')<2varepsilon$ then $l'=l''$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I was doing both proof of uniqueness of limit of a sequence and function and i don't understand why in sequence we take $nu=max{nu',nu''}$ and in function we take $delta=min{delta',delta''}$



      I hope it's clear without writing the whole proof of both theorems, thanks.



      Let X,Y be metric spaces, $f:Ato Y$ a function and $l',l''in Y$



      if $lim_{xto x_0}f(x)=l'$ and $lim_{xto x_0}f(x)=l'$ $implies l'=l''$



      Proof.



      $forallvarepsilon>0$ $exists delta'>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$



      $forallvarepsilon>0$ $exists delta''>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l'')<varepsilon$



      Let $delta=min{delta',delta''}$. So



      $forallvarepsilon>0$ $exists delta>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$ $d_Y(f(x),l'')<varepsilon$



      Then $forall>0$ $d_Y(l',l'')<2varepsilon$ then $l'=l''$










      share|cite|improve this question











      $endgroup$




      I was doing both proof of uniqueness of limit of a sequence and function and i don't understand why in sequence we take $nu=max{nu',nu''}$ and in function we take $delta=min{delta',delta''}$



      I hope it's clear without writing the whole proof of both theorems, thanks.



      Let X,Y be metric spaces, $f:Ato Y$ a function and $l',l''in Y$



      if $lim_{xto x_0}f(x)=l'$ and $lim_{xto x_0}f(x)=l'$ $implies l'=l''$



      Proof.



      $forallvarepsilon>0$ $exists delta'>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$



      $forallvarepsilon>0$ $exists delta''>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l'')<varepsilon$



      Let $delta=min{delta',delta''}$. So



      $forallvarepsilon>0$ $exists delta>0:forall xin A$ $d_X(x,x_0)<delta $ $xneq x_0$ $d_Y(f(x),l')<varepsilon$ $d_Y(f(x),l'')<varepsilon$



      Then $forall>0$ $d_Y(l',l'')<2varepsilon$ then $l'=l''$







      calculus limits proof-explanation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '18 at 19:48







      Archimedess

















      asked Dec 1 '18 at 19:33









      ArchimedessArchimedess

      165




      165






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Yes, it is clear. When dealing with sequences, we have a condition of the type$$(existsnuinmathbb{N}):ngeqslantnuimplies C_n$$So, if we have a $nu_1$ and a $nu_2$ such that $nimplies C_n$ whenever $ngeqslantnu_1$ and $ngeqslantnu_2$, then we take $nu=max{nu_1,nu_2}$ because$$ngeqslantmax{nu_1,nu_2}iff ngeqslantnu_1text{ and }ngeqslantnu_2.$$But in the case of functions, we have a condition of the type$$lvert x-arvert<deltaimpliescdots$$Before we had $geqslant$ and now we have $<$. So, we consider $min{delta_1,delta_2}$, because$$lvert x-arvert<min{delta_1,delta_2}ifflvert x-arvert<delta_1text{ and }lvert x-arvert<delta_2.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh thanks, it's pretty obvious now.
            $endgroup$
            – Archimedess
            Dec 1 '18 at 19:53











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021721%2funiqueness-of-limit-of-sequence-and-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Yes, it is clear. When dealing with sequences, we have a condition of the type$$(existsnuinmathbb{N}):ngeqslantnuimplies C_n$$So, if we have a $nu_1$ and a $nu_2$ such that $nimplies C_n$ whenever $ngeqslantnu_1$ and $ngeqslantnu_2$, then we take $nu=max{nu_1,nu_2}$ because$$ngeqslantmax{nu_1,nu_2}iff ngeqslantnu_1text{ and }ngeqslantnu_2.$$But in the case of functions, we have a condition of the type$$lvert x-arvert<deltaimpliescdots$$Before we had $geqslant$ and now we have $<$. So, we consider $min{delta_1,delta_2}$, because$$lvert x-arvert<min{delta_1,delta_2}ifflvert x-arvert<delta_1text{ and }lvert x-arvert<delta_2.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh thanks, it's pretty obvious now.
            $endgroup$
            – Archimedess
            Dec 1 '18 at 19:53
















          2












          $begingroup$

          Yes, it is clear. When dealing with sequences, we have a condition of the type$$(existsnuinmathbb{N}):ngeqslantnuimplies C_n$$So, if we have a $nu_1$ and a $nu_2$ such that $nimplies C_n$ whenever $ngeqslantnu_1$ and $ngeqslantnu_2$, then we take $nu=max{nu_1,nu_2}$ because$$ngeqslantmax{nu_1,nu_2}iff ngeqslantnu_1text{ and }ngeqslantnu_2.$$But in the case of functions, we have a condition of the type$$lvert x-arvert<deltaimpliescdots$$Before we had $geqslant$ and now we have $<$. So, we consider $min{delta_1,delta_2}$, because$$lvert x-arvert<min{delta_1,delta_2}ifflvert x-arvert<delta_1text{ and }lvert x-arvert<delta_2.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh thanks, it's pretty obvious now.
            $endgroup$
            – Archimedess
            Dec 1 '18 at 19:53














          2












          2








          2





          $begingroup$

          Yes, it is clear. When dealing with sequences, we have a condition of the type$$(existsnuinmathbb{N}):ngeqslantnuimplies C_n$$So, if we have a $nu_1$ and a $nu_2$ such that $nimplies C_n$ whenever $ngeqslantnu_1$ and $ngeqslantnu_2$, then we take $nu=max{nu_1,nu_2}$ because$$ngeqslantmax{nu_1,nu_2}iff ngeqslantnu_1text{ and }ngeqslantnu_2.$$But in the case of functions, we have a condition of the type$$lvert x-arvert<deltaimpliescdots$$Before we had $geqslant$ and now we have $<$. So, we consider $min{delta_1,delta_2}$, because$$lvert x-arvert<min{delta_1,delta_2}ifflvert x-arvert<delta_1text{ and }lvert x-arvert<delta_2.$$






          share|cite|improve this answer











          $endgroup$



          Yes, it is clear. When dealing with sequences, we have a condition of the type$$(existsnuinmathbb{N}):ngeqslantnuimplies C_n$$So, if we have a $nu_1$ and a $nu_2$ such that $nimplies C_n$ whenever $ngeqslantnu_1$ and $ngeqslantnu_2$, then we take $nu=max{nu_1,nu_2}$ because$$ngeqslantmax{nu_1,nu_2}iff ngeqslantnu_1text{ and }ngeqslantnu_2.$$But in the case of functions, we have a condition of the type$$lvert x-arvert<deltaimpliescdots$$Before we had $geqslant$ and now we have $<$. So, we consider $min{delta_1,delta_2}$, because$$lvert x-arvert<min{delta_1,delta_2}ifflvert x-arvert<delta_1text{ and }lvert x-arvert<delta_2.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 1 '18 at 19:42









          K Split X

          4,19611131




          4,19611131










          answered Dec 1 '18 at 19:42









          José Carlos SantosJosé Carlos Santos

          154k22123226




          154k22123226












          • $begingroup$
            Oh thanks, it's pretty obvious now.
            $endgroup$
            – Archimedess
            Dec 1 '18 at 19:53


















          • $begingroup$
            Oh thanks, it's pretty obvious now.
            $endgroup$
            – Archimedess
            Dec 1 '18 at 19:53
















          $begingroup$
          Oh thanks, it's pretty obvious now.
          $endgroup$
          – Archimedess
          Dec 1 '18 at 19:53




          $begingroup$
          Oh thanks, it's pretty obvious now.
          $endgroup$
          – Archimedess
          Dec 1 '18 at 19:53


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021721%2funiqueness-of-limit-of-sequence-and-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei