Values of $x$ satisfying $sin xcdotcos^3 x>sin^3xcdotcos x$
$begingroup$
For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?
My Attempt
$$
sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
xin(0,pi)implies4xin(0,4pi)\
4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
$$
But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?
trigonometry inequality
$endgroup$
add a comment |
$begingroup$
For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?
My Attempt
$$
sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
xin(0,pi)implies4xin(0,4pi)\
4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
$$
But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?
trigonometry inequality
$endgroup$
add a comment |
$begingroup$
For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?
My Attempt
$$
sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
xin(0,pi)implies4xin(0,4pi)\
4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
$$
But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?
trigonometry inequality
$endgroup$
For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?
My Attempt
$$
sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
xin(0,pi)implies4xin(0,4pi)\
4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
$$
But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?
trigonometry inequality
trigonometry inequality
edited Dec 1 '18 at 19:10
TheSimpliFire
12.6k62360
12.6k62360
asked Dec 1 '18 at 18:56
ss1729ss1729
1,8541723
1,8541723
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
Finishing what you did
$$sin(4x)>0iff$$
$$2kpi <4x<(2k+1)pi iff$$
$$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$
$k=0$ gives $0<x<frac{pi}{4}$
and
$k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.
$endgroup$
add a comment |
$begingroup$
As an alternative for a full solution we can consider two cases
$sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$
$$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$
$sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$
$$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$
and then your solution is correct.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021679%2fvalues-of-x-satisfying-sin-x-cdot-cos3-x-sin3x-cdot-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.
$endgroup$
The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.
answered Dec 1 '18 at 19:00
TheSimpliFireTheSimpliFire
12.6k62360
12.6k62360
add a comment |
add a comment |
$begingroup$
Finishing what you did
$$sin(4x)>0iff$$
$$2kpi <4x<(2k+1)pi iff$$
$$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$
$k=0$ gives $0<x<frac{pi}{4}$
and
$k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.
$endgroup$
add a comment |
$begingroup$
Finishing what you did
$$sin(4x)>0iff$$
$$2kpi <4x<(2k+1)pi iff$$
$$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$
$k=0$ gives $0<x<frac{pi}{4}$
and
$k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.
$endgroup$
add a comment |
$begingroup$
Finishing what you did
$$sin(4x)>0iff$$
$$2kpi <4x<(2k+1)pi iff$$
$$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$
$k=0$ gives $0<x<frac{pi}{4}$
and
$k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.
$endgroup$
Finishing what you did
$$sin(4x)>0iff$$
$$2kpi <4x<(2k+1)pi iff$$
$$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$
$k=0$ gives $0<x<frac{pi}{4}$
and
$k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.
answered Dec 1 '18 at 19:12
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
add a comment |
add a comment |
$begingroup$
As an alternative for a full solution we can consider two cases
$sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$
$$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$
$sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$
$$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$
and then your solution is correct.
$endgroup$
add a comment |
$begingroup$
As an alternative for a full solution we can consider two cases
$sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$
$$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$
$sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$
$$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$
and then your solution is correct.
$endgroup$
add a comment |
$begingroup$
As an alternative for a full solution we can consider two cases
$sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$
$$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$
$sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$
$$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$
and then your solution is correct.
$endgroup$
As an alternative for a full solution we can consider two cases
$sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$
$$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$
$sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$
$$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$
$$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$
and then your solution is correct.
answered Dec 1 '18 at 20:02
gimusigimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021679%2fvalues-of-x-satisfying-sin-x-cdot-cos3-x-sin3x-cdot-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown