Values of $x$ satisfying $sin xcdotcos^3 x>sin^3xcdotcos x$












5












$begingroup$



For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?




My Attempt
$$
sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
xin(0,pi)implies4xin(0,4pi)\
4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
$$

But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?










share|cite|improve this question











$endgroup$

















    5












    $begingroup$



    For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?




    My Attempt
    $$
    sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
    xin(0,pi)implies4xin(0,4pi)\
    4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
    $$

    But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?










    share|cite|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$



      For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?




      My Attempt
      $$
      sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
      xin(0,pi)implies4xin(0,4pi)\
      4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
      $$

      But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?










      share|cite|improve this question











      $endgroup$





      For what values of $x$ between $0$ and $pi$ does the inequality $sin xcdotcos^3 x>sin^3xcdotcos x$ hold?




      My Attempt
      $$
      sin xcos xcdot(cos^2x-sin^2x)=frac{1}{2}cdotsin2xcdotcos2x=frac{1}{4}cdotsin4x>0impliessin4x>0\
      xin(0,pi)implies4xin(0,4pi)\
      4xin(0,pi)cup(2pi,3pi)implies xinBig(0,frac{pi}{4}Big)cupBig(frac{pi}{2},frac{3pi}{4}Big)
      $$

      But, my reference gives the solution, $xinBig(0,dfrac{pi}{4}Big)cupBig(dfrac{3pi}{4},piBig)$, where am I going wrong with my attempt?







      trigonometry inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '18 at 19:10









      TheSimpliFire

      12.6k62360




      12.6k62360










      asked Dec 1 '18 at 18:56









      ss1729ss1729

      1,8541723




      1,8541723






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Finishing what you did



            $$sin(4x)>0iff$$



            $$2kpi <4x<(2k+1)pi iff$$



            $$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$



            $k=0$ gives $0<x<frac{pi}{4}$



            and
            $k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              As an alternative for a full solution we can consider two cases





              • $sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$


              $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$



              $$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$





              • $sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$


              $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$



              $$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$



              and then your solution is correct.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021679%2fvalues-of-x-satisfying-sin-x-cdot-cos3-x-sin3x-cdot-cos-x%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                5












                $begingroup$

                The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.






                share|cite|improve this answer









                $endgroup$


















                  5












                  $begingroup$

                  The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.






                  share|cite|improve this answer









                  $endgroup$
















                    5












                    5








                    5





                    $begingroup$

                    The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.






                    share|cite|improve this answer









                    $endgroup$



                    The given solution is wrong; you are correct. At $x=frac{7pi}8inleft(frac{3pi}4,piright)$, we have that $$frac14sin4x=frac14sinfrac{7pi}2=-frac14<0$$ which is a contradiction.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 1 '18 at 19:00









                    TheSimpliFireTheSimpliFire

                    12.6k62360




                    12.6k62360























                        0












                        $begingroup$

                        Finishing what you did



                        $$sin(4x)>0iff$$



                        $$2kpi <4x<(2k+1)pi iff$$



                        $$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$



                        $k=0$ gives $0<x<frac{pi}{4}$



                        and
                        $k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Finishing what you did



                          $$sin(4x)>0iff$$



                          $$2kpi <4x<(2k+1)pi iff$$



                          $$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$



                          $k=0$ gives $0<x<frac{pi}{4}$



                          and
                          $k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Finishing what you did



                            $$sin(4x)>0iff$$



                            $$2kpi <4x<(2k+1)pi iff$$



                            $$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$



                            $k=0$ gives $0<x<frac{pi}{4}$



                            and
                            $k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.






                            share|cite|improve this answer









                            $endgroup$



                            Finishing what you did



                            $$sin(4x)>0iff$$



                            $$2kpi <4x<(2k+1)pi iff$$



                            $$frac{kpi}{2}<x<frac{kpi}{2}+frac{pi}{4}$$



                            $k=0$ gives $0<x<frac{pi}{4}$



                            and
                            $k=1$ gives $frac{pi}{2}<x<frac{3pi}{4}$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 1 '18 at 19:12









                            hamam_Abdallahhamam_Abdallah

                            38k21634




                            38k21634























                                0












                                $begingroup$

                                As an alternative for a full solution we can consider two cases





                                • $sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$


                                $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$



                                $$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$





                                • $sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$


                                $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$



                                $$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$



                                and then your solution is correct.






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  As an alternative for a full solution we can consider two cases





                                  • $sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$


                                  $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$



                                  $$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$





                                  • $sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$


                                  $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$



                                  $$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$



                                  and then your solution is correct.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    As an alternative for a full solution we can consider two cases





                                    • $sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$


                                    $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$



                                    $$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$





                                    • $sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$


                                    $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$



                                    $$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$



                                    and then your solution is correct.






                                    share|cite|improve this answer









                                    $endgroup$



                                    As an alternative for a full solution we can consider two cases





                                    • $sin x cos x >0$ that is $xin(0,pi/2)cup(pi,3pi/2)$


                                    $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x>sin^2x iff2sin^2 x<1$$



                                    $$-frac{sqrt 2}2<sin x<0 ,land, 0<sin x<frac{sqrt 2}2 iff color{red}{xin(0,pi/4)}cup(pi,5pi/4)$$





                                    • $sin x cos x <0$ that is $xin(pi/2,pi)cup(3pi/2,2pi)$


                                    $$sin xcdotcos^3 x>sin^3xcdotcos x iffcos^2x<sin^2x iff2sin^2 x>1$$



                                    $$-1<sin x<-frac{sqrt 2}2,land, frac{sqrt 2}2<sin x <1 iff color{red}{xin(pi/2,3pi/4)}cup(3pi/2,7pi/4)$$



                                    and then your solution is correct.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 1 '18 at 20:02









                                    gimusigimusi

                                    1




                                    1






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021679%2fvalues-of-x-satisfying-sin-x-cdot-cos3-x-sin3x-cdot-cos-x%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Ellipse (mathématiques)

                                        Quarter-circle Tiles

                                        Mont Emei