calculate angle of line with negative slope
$begingroup$
I want to use the formula
$$
tan(alpha)=m
$$
for negative slopes but always get negative degrees. For instance, say the slope of a line $g$ is $-1$. Using the formula above (arctan$(-1)=alpha$), I get $-45$ degrees instead of $135$ degrees.
Why exactly does this formula not returning correct angles for negative slopes?
angle slope
$endgroup$
add a comment |
$begingroup$
I want to use the formula
$$
tan(alpha)=m
$$
for negative slopes but always get negative degrees. For instance, say the slope of a line $g$ is $-1$. Using the formula above (arctan$(-1)=alpha$), I get $-45$ degrees instead of $135$ degrees.
Why exactly does this formula not returning correct angles for negative slopes?
angle slope
$endgroup$
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12
add a comment |
$begingroup$
I want to use the formula
$$
tan(alpha)=m
$$
for negative slopes but always get negative degrees. For instance, say the slope of a line $g$ is $-1$. Using the formula above (arctan$(-1)=alpha$), I get $-45$ degrees instead of $135$ degrees.
Why exactly does this formula not returning correct angles for negative slopes?
angle slope
$endgroup$
I want to use the formula
$$
tan(alpha)=m
$$
for negative slopes but always get negative degrees. For instance, say the slope of a line $g$ is $-1$. Using the formula above (arctan$(-1)=alpha$), I get $-45$ degrees instead of $135$ degrees.
Why exactly does this formula not returning correct angles for negative slopes?
angle slope
angle slope
asked Dec 18 '18 at 10:07
lagunalaguna
767
767
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12
add a comment |
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use this formula: $alpha=begin{cases}tan^{-1}m,&mge0\pi+tan^{-1}m,&m<0end{cases}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044983%2fcalculate-angle-of-line-with-negative-slope%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use this formula: $alpha=begin{cases}tan^{-1}m,&mge0\pi+tan^{-1}m,&m<0end{cases}$
$endgroup$
add a comment |
$begingroup$
Use this formula: $alpha=begin{cases}tan^{-1}m,&mge0\pi+tan^{-1}m,&m<0end{cases}$
$endgroup$
add a comment |
$begingroup$
Use this formula: $alpha=begin{cases}tan^{-1}m,&mge0\pi+tan^{-1}m,&m<0end{cases}$
$endgroup$
Use this formula: $alpha=begin{cases}tan^{-1}m,&mge0\pi+tan^{-1}m,&m<0end{cases}$
answered Dec 18 '18 at 10:11
Shubham JohriShubham Johri
5,192717
5,192717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044983%2fcalculate-angle-of-line-with-negative-slope%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It all depends on how you define $arctan$. It is usually defined as the inverse function of the restriction of $tan$ on $left( -frac{pi}{2}, frac{pi}{2}right)$.
$endgroup$
– Bill O'Haran
Dec 18 '18 at 10:12