Convergence of generic p-series












0












$begingroup$


Consider the generic p-series:



$sum_{n=1}^{infty}frac{1}{n^{p}}$



Let the increment function be: $n= n+K$



where $K$ is some integer constant. For $K=1$ its simple p-series and that diverges for any $p<1$.



Can we have some integer value of $K$ beyond which the series converges for $p<1$. Specifically for $ 1/2 < p <1.$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
    $endgroup$
    – metamorphy
    Dec 18 '18 at 10:57












  • $begingroup$
    Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
    $endgroup$
    – TheoryQuest1
    Dec 18 '18 at 11:13








  • 1




    $begingroup$
    Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
    $endgroup$
    – metamorphy
    Dec 18 '18 at 11:16
















0












$begingroup$


Consider the generic p-series:



$sum_{n=1}^{infty}frac{1}{n^{p}}$



Let the increment function be: $n= n+K$



where $K$ is some integer constant. For $K=1$ its simple p-series and that diverges for any $p<1$.



Can we have some integer value of $K$ beyond which the series converges for $p<1$. Specifically for $ 1/2 < p <1.$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
    $endgroup$
    – metamorphy
    Dec 18 '18 at 10:57












  • $begingroup$
    Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
    $endgroup$
    – TheoryQuest1
    Dec 18 '18 at 11:13








  • 1




    $begingroup$
    Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
    $endgroup$
    – metamorphy
    Dec 18 '18 at 11:16














0












0








0





$begingroup$


Consider the generic p-series:



$sum_{n=1}^{infty}frac{1}{n^{p}}$



Let the increment function be: $n= n+K$



where $K$ is some integer constant. For $K=1$ its simple p-series and that diverges for any $p<1$.



Can we have some integer value of $K$ beyond which the series converges for $p<1$. Specifically for $ 1/2 < p <1.$










share|cite|improve this question









$endgroup$




Consider the generic p-series:



$sum_{n=1}^{infty}frac{1}{n^{p}}$



Let the increment function be: $n= n+K$



where $K$ is some integer constant. For $K=1$ its simple p-series and that diverges for any $p<1$.



Can we have some integer value of $K$ beyond which the series converges for $p<1$. Specifically for $ 1/2 < p <1.$







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 18 '18 at 10:27









TheoryQuest1TheoryQuest1

1417




1417








  • 1




    $begingroup$
    $displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
    $endgroup$
    – metamorphy
    Dec 18 '18 at 10:57












  • $begingroup$
    Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
    $endgroup$
    – TheoryQuest1
    Dec 18 '18 at 11:13








  • 1




    $begingroup$
    Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
    $endgroup$
    – metamorphy
    Dec 18 '18 at 11:16














  • 1




    $begingroup$
    $displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
    $endgroup$
    – metamorphy
    Dec 18 '18 at 10:57












  • $begingroup$
    Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
    $endgroup$
    – TheoryQuest1
    Dec 18 '18 at 11:13








  • 1




    $begingroup$
    Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
    $endgroup$
    – metamorphy
    Dec 18 '18 at 11:16








1




1




$begingroup$
$displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
$endgroup$
– metamorphy
Dec 18 '18 at 10:57






$begingroup$
$displaystylesum_{n=1}^{infty}frac{1}{(n+K)^p}$ converges iff $p>1$ (regardless of $K$). Did you mean something else?
$endgroup$
– metamorphy
Dec 18 '18 at 10:57














$begingroup$
Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
$endgroup$
– TheoryQuest1
Dec 18 '18 at 11:13






$begingroup$
Ah it didn't sorry. The question is what if we consider every $K^{th}$ term for the values of $n$. Does the same constraint still hold true? or can we for some $K$ have the series converge even if $p<1$. I would thus rewrite the question as $displaystylesum_{n=1}^{infty}frac{1}{(n*K)^p}$
$endgroup$
– TheoryQuest1
Dec 18 '18 at 11:13






1




1




$begingroup$
Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
$endgroup$
– metamorphy
Dec 18 '18 at 11:16




$begingroup$
Then it is $displaystylefrac{1}{K^p}sum_{n=1}^{infty}frac{1}{n^p}$. With the same outcome.
$endgroup$
– metamorphy
Dec 18 '18 at 11:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045000%2fconvergence-of-generic-p-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045000%2fconvergence-of-generic-p-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Quarter-circle Tiles

build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

Mont Emei