Proving that $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert$ defines a norm on $B(X,Y). $












0












$begingroup$


Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $



we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



MY TRIAL



1.
begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
2.
begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}



3.
begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $



    we have for arbitrary $Tin B(X,Y), $
    begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



    MY TRIAL



    1.
    begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
    2.
    begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}



    3.
    begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
    Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $



      we have for arbitrary $Tin B(X,Y), $
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



      MY TRIAL



      1.
      begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
      2.
      begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}



      3.
      begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
      Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.










      share|cite|improve this question









      $endgroup$




      Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $



      we have for arbitrary $Tin B(X,Y), $
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



      MY TRIAL



      1.
      begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
      2.
      begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}



      3.
      begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
      Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.







      functional-analysis norm normed-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 18 '18 at 9:20









      Omojola MichealOmojola Micheal

      1,873324




      1,873324






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
            $endgroup$
            – Omojola Micheal
            Dec 18 '18 at 12:06










          • $begingroup$
            Isn't it obvious that $T=0$ implies $|T|=0$?
            $endgroup$
            – Kavi Rama Murthy
            Dec 18 '18 at 23:13











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044939%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert-d%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
            $endgroup$
            – Omojola Micheal
            Dec 18 '18 at 12:06










          • $begingroup$
            Isn't it obvious that $T=0$ implies $|T|=0$?
            $endgroup$
            – Kavi Rama Murthy
            Dec 18 '18 at 23:13
















          2












          $begingroup$

          Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
            $endgroup$
            – Omojola Micheal
            Dec 18 '18 at 12:06










          • $begingroup$
            Isn't it obvious that $T=0$ implies $|T|=0$?
            $endgroup$
            – Kavi Rama Murthy
            Dec 18 '18 at 23:13














          2












          2








          2





          $begingroup$

          Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.






          share|cite|improve this answer









          $endgroup$



          Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 18 '18 at 9:24









          Kavi Rama MurthyKavi Rama Murthy

          60k42161




          60k42161












          • $begingroup$
            Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
            $endgroup$
            – Omojola Micheal
            Dec 18 '18 at 12:06










          • $begingroup$
            Isn't it obvious that $T=0$ implies $|T|=0$?
            $endgroup$
            – Kavi Rama Murthy
            Dec 18 '18 at 23:13


















          • $begingroup$
            Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
            $endgroup$
            – Omojola Micheal
            Dec 18 '18 at 12:06










          • $begingroup$
            Isn't it obvious that $T=0$ implies $|T|=0$?
            $endgroup$
            – Kavi Rama Murthy
            Dec 18 '18 at 23:13
















          $begingroup$
          Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
          $endgroup$
          – Omojola Micheal
          Dec 18 '18 at 12:06




          $begingroup$
          Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
          $endgroup$
          – Omojola Micheal
          Dec 18 '18 at 12:06












          $begingroup$
          Isn't it obvious that $T=0$ implies $|T|=0$?
          $endgroup$
          – Kavi Rama Murthy
          Dec 18 '18 at 23:13




          $begingroup$
          Isn't it obvious that $T=0$ implies $|T|=0$?
          $endgroup$
          – Kavi Rama Murthy
          Dec 18 '18 at 23:13


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044939%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert-d%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei