From Hessian to Lipschitz continuity












0












$begingroup$


Let $f$ be convex and twice differentiable. I can't prove that
$$
nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
$$
I only established the converse.



edit:



There exists a $zintext{conv}{x,y}$ such that
$$
nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
$$
By multiplying on the left by $(y-x)^T$ we get
$$
begin{align}
(y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
&leq (y-x)^T nabla f(x) + L||y-x||_2^2
end{align}
$$
Now how do we prove that
$$
(nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
$$
I think I'm missing something very easy.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $f$ be convex and twice differentiable. I can't prove that
    $$
    nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
    $$
    I only established the converse.



    edit:



    There exists a $zintext{conv}{x,y}$ such that
    $$
    nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
    $$
    By multiplying on the left by $(y-x)^T$ we get
    $$
    begin{align}
    (y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
    &leq (y-x)^T nabla f(x) + L||y-x||_2^2
    end{align}
    $$
    Now how do we prove that
    $$
    (nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
    $$
    I think I'm missing something very easy.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Let $f$ be convex and twice differentiable. I can't prove that
      $$
      nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
      $$
      I only established the converse.



      edit:



      There exists a $zintext{conv}{x,y}$ such that
      $$
      nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
      $$
      By multiplying on the left by $(y-x)^T$ we get
      $$
      begin{align}
      (y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
      &leq (y-x)^T nabla f(x) + L||y-x||_2^2
      end{align}
      $$
      Now how do we prove that
      $$
      (nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
      $$
      I think I'm missing something very easy.










      share|cite|improve this question











      $endgroup$




      Let $f$ be convex and twice differentiable. I can't prove that
      $$
      nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
      $$
      I only established the converse.



      edit:



      There exists a $zintext{conv}{x,y}$ such that
      $$
      nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
      $$
      By multiplying on the left by $(y-x)^T$ we get
      $$
      begin{align}
      (y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
      &leq (y-x)^T nabla f(x) + L||y-x||_2^2
      end{align}
      $$
      Now how do we prove that
      $$
      (nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
      $$
      I think I'm missing something very easy.







      convex-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 23 '17 at 12:26







      Kiuhnm

















      asked May 23 '17 at 1:24









      KiuhnmKiuhnm

      361211




      361211






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
          begin{align}
          |nabla f(y) - nabla f(x)|
          &=
          |g(1) - g(0)|
          \
          &= left| int_0^1 g'(t) mathop{dt}right|
          \
          &le int_0^1 |g'(t)| mathop{dt}
          \
          &= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
          \
          &le int_0^1 L |x-y| mathop{dt}
          \
          &= L|x-y|.
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            What property do you use for the last $leq$? Thanks.
            $endgroup$
            – Kiuhnm
            May 23 '17 at 23:06








          • 1




            $begingroup$
            @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
            $endgroup$
            – angryavian
            May 23 '17 at 23:21










          • $begingroup$
            Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
            $endgroup$
            – Kiuhnm
            May 24 '17 at 0:12








          • 1




            $begingroup$
            Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
            $endgroup$
            – angryavian
            May 24 '17 at 1:33











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2292769%2ffrom-hessian-to-lipschitz-continuity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
          begin{align}
          |nabla f(y) - nabla f(x)|
          &=
          |g(1) - g(0)|
          \
          &= left| int_0^1 g'(t) mathop{dt}right|
          \
          &le int_0^1 |g'(t)| mathop{dt}
          \
          &= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
          \
          &le int_0^1 L |x-y| mathop{dt}
          \
          &= L|x-y|.
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            What property do you use for the last $leq$? Thanks.
            $endgroup$
            – Kiuhnm
            May 23 '17 at 23:06








          • 1




            $begingroup$
            @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
            $endgroup$
            – angryavian
            May 23 '17 at 23:21










          • $begingroup$
            Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
            $endgroup$
            – Kiuhnm
            May 24 '17 at 0:12








          • 1




            $begingroup$
            Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
            $endgroup$
            – angryavian
            May 24 '17 at 1:33
















          1












          $begingroup$

          Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
          begin{align}
          |nabla f(y) - nabla f(x)|
          &=
          |g(1) - g(0)|
          \
          &= left| int_0^1 g'(t) mathop{dt}right|
          \
          &le int_0^1 |g'(t)| mathop{dt}
          \
          &= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
          \
          &le int_0^1 L |x-y| mathop{dt}
          \
          &= L|x-y|.
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            What property do you use for the last $leq$? Thanks.
            $endgroup$
            – Kiuhnm
            May 23 '17 at 23:06








          • 1




            $begingroup$
            @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
            $endgroup$
            – angryavian
            May 23 '17 at 23:21










          • $begingroup$
            Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
            $endgroup$
            – Kiuhnm
            May 24 '17 at 0:12








          • 1




            $begingroup$
            Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
            $endgroup$
            – angryavian
            May 24 '17 at 1:33














          1












          1








          1





          $begingroup$

          Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
          begin{align}
          |nabla f(y) - nabla f(x)|
          &=
          |g(1) - g(0)|
          \
          &= left| int_0^1 g'(t) mathop{dt}right|
          \
          &le int_0^1 |g'(t)| mathop{dt}
          \
          &= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
          \
          &le int_0^1 L |x-y| mathop{dt}
          \
          &= L|x-y|.
          end{align}






          share|cite|improve this answer









          $endgroup$



          Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
          begin{align}
          |nabla f(y) - nabla f(x)|
          &=
          |g(1) - g(0)|
          \
          &= left| int_0^1 g'(t) mathop{dt}right|
          \
          &le int_0^1 |g'(t)| mathop{dt}
          \
          &= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
          \
          &le int_0^1 L |x-y| mathop{dt}
          \
          &= L|x-y|.
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered May 23 '17 at 21:36









          angryavianangryavian

          41.7k23381




          41.7k23381












          • $begingroup$
            What property do you use for the last $leq$? Thanks.
            $endgroup$
            – Kiuhnm
            May 23 '17 at 23:06








          • 1




            $begingroup$
            @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
            $endgroup$
            – angryavian
            May 23 '17 at 23:21










          • $begingroup$
            Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
            $endgroup$
            – Kiuhnm
            May 24 '17 at 0:12








          • 1




            $begingroup$
            Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
            $endgroup$
            – angryavian
            May 24 '17 at 1:33


















          • $begingroup$
            What property do you use for the last $leq$? Thanks.
            $endgroup$
            – Kiuhnm
            May 23 '17 at 23:06








          • 1




            $begingroup$
            @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
            $endgroup$
            – angryavian
            May 23 '17 at 23:21










          • $begingroup$
            Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
            $endgroup$
            – Kiuhnm
            May 24 '17 at 0:12








          • 1




            $begingroup$
            Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
            $endgroup$
            – angryavian
            May 24 '17 at 1:33
















          $begingroup$
          What property do you use for the last $leq$? Thanks.
          $endgroup$
          – Kiuhnm
          May 23 '17 at 23:06






          $begingroup$
          What property do you use for the last $leq$? Thanks.
          $endgroup$
          – Kiuhnm
          May 23 '17 at 23:06






          1




          1




          $begingroup$
          @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
          $endgroup$
          – angryavian
          May 23 '17 at 23:21




          $begingroup$
          @Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
          $endgroup$
          – angryavian
          May 23 '17 at 23:21












          $begingroup$
          Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
          $endgroup$
          – Kiuhnm
          May 24 '17 at 0:12






          $begingroup$
          Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
          $endgroup$
          – Kiuhnm
          May 24 '17 at 0:12






          1




          1




          $begingroup$
          Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
          $endgroup$
          – angryavian
          May 24 '17 at 1:33




          $begingroup$
          Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
          $endgroup$
          – angryavian
          May 24 '17 at 1:33


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2292769%2ffrom-hessian-to-lipschitz-continuity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei