If $(X_t)_{tge0}$ is a Markov process with invariant measure $mu$, does the distribution of $X_t$ weakly...
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$
$C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$
As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$
Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.
Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?
probability-theory measure-theory stochastic-processes markov-process stochastic-analysis
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$
$C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$
As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$
Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.
Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?
probability-theory measure-theory stochastic-processes markov-process stochastic-analysis
$endgroup$
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$
$C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$
As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$
Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.
Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?
probability-theory measure-theory stochastic-processes markov-process stochastic-analysis
$endgroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(X_t)_{tge0}$ be a time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$ and $kappa_t$ denote a regular version of the conditional distribution of $X_t$ given $X_0$ for $tge0$, i.e. $$kappa_t(x,B)=operatorname Pleft[X_tin Bmid X_0=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$
$C_0(mathbb R)$ denote the space of continuous functions on $mathbb R$ vanishing at infinity
$mu$ be a probability measure on $(mathbb R,mathcal B(mathbb R))$
As usual, let $$kappa_tf:=intkappa_t(x,{rm d}y)f(y)$$ for bounded Borel measurable $f:mathbb Rtomathbb R$ and $tge0$.
Assume $$kappa_tC_0(mathbb R)subseteq C_0(mathbb R);;;text{for all }tge0.tag2$$
Let $$mu_t(B):=operatorname Pleft[X_tin Bright];;;text{for }Binmathcal B(mathbb R)$$ for $tge0$. It's easy to see that weak convergence of $mu_t$ to $mu$ as $ttoinfty$ implies that $mu$ is invariant with respect to $(kappa_t)_{tge0}$, i.e. $$mukappa_t=mu;;;text{for all }tge0,$$ where $mukappa_t$ denotes the composition of $mu$ and $kappa_t$.
Does the converse hold as well, i.e. if $mu$ is invariant with respect to $(kappa_t)_{tge0}$, are we able to conclude that $mu_t$ converges weakly to $mu$ as $ttoinfty$?
probability-theory measure-theory stochastic-processes markov-process stochastic-analysis
probability-theory measure-theory stochastic-processes markov-process stochastic-analysis
asked Dec 28 '18 at 0:45
0xbadf00d0xbadf00d
1,98541532
1,98541532
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35
add a comment |
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054481%2fif-x-t-t-ge0-is-a-markov-process-with-invariant-measure-mu-does-the-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054481%2fif-x-t-t-ge0-is-a-markov-process-with-invariant-measure-mu-does-the-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is the relation between $mu_t$, $kappa_t$ and $mu$? Is it something like $$mu_t (B) = int kappa_t(x,B) mu(, d x) = P^{mu}(X_t in B) ?$$ Because otherwise $mu_t to mu$ weakly will not imply $mu kappa_t = mu$.
$endgroup$
– Sayantan
Dec 28 '18 at 1:43
$begingroup$
@Sayantan We've got $mu_t=mu_0otimes kappa_t$ (product of $mu_0$ and $kappa_t$).
$endgroup$
– 0xbadf00d
Dec 28 '18 at 10:35