Verifying that $ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$












0












$begingroup$


On page 165 of Chapter 13, how was the equality made from line 1 to line 2?



https://archive.org/details/NumberTheory_862/page/n173



Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    On page 165 of Chapter 13, how was the equality made from line 1 to line 2?



    https://archive.org/details/NumberTheory_862/page/n173



    Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      On page 165 of Chapter 13, how was the equality made from line 1 to line 2?



      https://archive.org/details/NumberTheory_862/page/n173



      Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$










      share|cite|improve this question











      $endgroup$




      On page 165 of Chapter 13, how was the equality made from line 1 to line 2?



      https://archive.org/details/NumberTheory_862/page/n173



      Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$







      infinite-product integer-partitions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 17 '18 at 0:42









      Blue

      48.4k870154




      48.4k870154










      asked Dec 17 '18 at 0:25









      zodrosszodross

      1546




      1546






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Simply pair-off factors and use the fact that multiplication is commutative:
          begin{align*}
          prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
          & = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
          & = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
          & = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see. Thank you.
            $endgroup$
            – zodross
            Dec 17 '18 at 0:32











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043390%2fverifying-that-prod-j-1-infty-frac11-qj-prod-j-1-infty-fr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Simply pair-off factors and use the fact that multiplication is commutative:
          begin{align*}
          prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
          & = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
          & = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
          & = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see. Thank you.
            $endgroup$
            – zodross
            Dec 17 '18 at 0:32
















          2












          $begingroup$

          Simply pair-off factors and use the fact that multiplication is commutative:
          begin{align*}
          prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
          & = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
          & = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
          & = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, I see. Thank you.
            $endgroup$
            – zodross
            Dec 17 '18 at 0:32














          2












          2








          2





          $begingroup$

          Simply pair-off factors and use the fact that multiplication is commutative:
          begin{align*}
          prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
          & = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
          & = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
          & = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
          end{align*}






          share|cite|improve this answer









          $endgroup$



          Simply pair-off factors and use the fact that multiplication is commutative:
          begin{align*}
          prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
          & = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
          & = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
          & = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
          end{align*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 0:30









          Will RWill R

          6,59731429




          6,59731429












          • $begingroup$
            Oh, I see. Thank you.
            $endgroup$
            – zodross
            Dec 17 '18 at 0:32


















          • $begingroup$
            Oh, I see. Thank you.
            $endgroup$
            – zodross
            Dec 17 '18 at 0:32
















          $begingroup$
          Oh, I see. Thank you.
          $endgroup$
          – zodross
          Dec 17 '18 at 0:32




          $begingroup$
          Oh, I see. Thank you.
          $endgroup$
          – zodross
          Dec 17 '18 at 0:32


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043390%2fverifying-that-prod-j-1-infty-frac11-qj-prod-j-1-infty-fr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei