Verifying that $ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$
$begingroup$
On page 165 of Chapter 13, how was the equality made from line 1 to line 2?
https://archive.org/details/NumberTheory_862/page/n173
Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$
infinite-product integer-partitions
$endgroup$
add a comment |
$begingroup$
On page 165 of Chapter 13, how was the equality made from line 1 to line 2?
https://archive.org/details/NumberTheory_862/page/n173
Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$
infinite-product integer-partitions
$endgroup$
add a comment |
$begingroup$
On page 165 of Chapter 13, how was the equality made from line 1 to line 2?
https://archive.org/details/NumberTheory_862/page/n173
Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$
infinite-product integer-partitions
$endgroup$
On page 165 of Chapter 13, how was the equality made from line 1 to line 2?
https://archive.org/details/NumberTheory_862/page/n173
Namely, how $$ prod_{j=1}^{infty} frac{1}{1-q^j} = prod_{j=1}^{infty} frac{1}{(1-q^{2j-1})(1-q^{2j})}$$
infinite-product integer-partitions
infinite-product integer-partitions
edited Dec 17 '18 at 0:42
Blue
48.4k870154
48.4k870154
asked Dec 17 '18 at 0:25
zodrosszodross
1546
1546
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Simply pair-off factors and use the fact that multiplication is commutative:
begin{align*}
prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
& = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
& = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
& = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
end{align*}
$endgroup$
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043390%2fverifying-that-prod-j-1-infty-frac11-qj-prod-j-1-infty-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Simply pair-off factors and use the fact that multiplication is commutative:
begin{align*}
prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
& = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
& = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
& = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
end{align*}
$endgroup$
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
add a comment |
$begingroup$
Simply pair-off factors and use the fact that multiplication is commutative:
begin{align*}
prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
& = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
& = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
& = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
end{align*}
$endgroup$
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
add a comment |
$begingroup$
Simply pair-off factors and use the fact that multiplication is commutative:
begin{align*}
prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
& = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
& = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
& = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
end{align*}
$endgroup$
Simply pair-off factors and use the fact that multiplication is commutative:
begin{align*}
prod_{j=1}^{infty}frac{1}{(1-q^{j})} & = frac{1}{1-q}frac{1}{1-q^2}frac{1}{1-q^3}frac{1}{1-q^4}cdots\
& = left(frac{1}{1-q}frac{1}{1-q^2}right)left(frac{1}{1-q^3}frac{1}{1-q^4}right)cdots\
& = left(frac{1}{1-q^{2}}frac{1}{1-q}right)left(frac{1}{1-q^4}frac{1}{1-q^{3}}right)cdots\
& = prod_{j=1}^{infty}frac{1}{(1-q^{2j})(1-q^{2j-1})}.
end{align*}
answered Dec 17 '18 at 0:30
Will RWill R
6,59731429
6,59731429
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
add a comment |
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
$begingroup$
Oh, I see. Thank you.
$endgroup$
– zodross
Dec 17 '18 at 0:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043390%2fverifying-that-prod-j-1-infty-frac11-qj-prod-j-1-infty-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown