Why is the exponential map clearly the identity map for $mathbb R^n$?












1












$begingroup$


Suppose that $M$ is a smooth Riemannian manifold, $qin M$. There exists an $epsilon$ such that $exp_q:B_{epsilon}(0)rightarrow M$ is a diffeomorphism.
In DoCarmo’s Riemannian Geometry book, it has been written that for $M=mathbb R^n$, this map $exp_q$ is the identity map, while $exp_q(v)=q+v$. So what does DoCarmo mean?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's your definition of the tangent space $T_qmathbb{R}^n$?
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:12










  • $begingroup$
    I identify it with $mathbb R^n$ itself. Why?
    $endgroup$
    – User12239
    Dec 17 '18 at 1:13






  • 1




    $begingroup$
    Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:17










  • $begingroup$
    Thanks, I got what he meant now @DanteGrevino
    $endgroup$
    – User12239
    Dec 17 '18 at 1:19
















1












$begingroup$


Suppose that $M$ is a smooth Riemannian manifold, $qin M$. There exists an $epsilon$ such that $exp_q:B_{epsilon}(0)rightarrow M$ is a diffeomorphism.
In DoCarmo’s Riemannian Geometry book, it has been written that for $M=mathbb R^n$, this map $exp_q$ is the identity map, while $exp_q(v)=q+v$. So what does DoCarmo mean?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's your definition of the tangent space $T_qmathbb{R}^n$?
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:12










  • $begingroup$
    I identify it with $mathbb R^n$ itself. Why?
    $endgroup$
    – User12239
    Dec 17 '18 at 1:13






  • 1




    $begingroup$
    Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:17










  • $begingroup$
    Thanks, I got what he meant now @DanteGrevino
    $endgroup$
    – User12239
    Dec 17 '18 at 1:19














1












1








1





$begingroup$


Suppose that $M$ is a smooth Riemannian manifold, $qin M$. There exists an $epsilon$ such that $exp_q:B_{epsilon}(0)rightarrow M$ is a diffeomorphism.
In DoCarmo’s Riemannian Geometry book, it has been written that for $M=mathbb R^n$, this map $exp_q$ is the identity map, while $exp_q(v)=q+v$. So what does DoCarmo mean?










share|cite|improve this question











$endgroup$




Suppose that $M$ is a smooth Riemannian manifold, $qin M$. There exists an $epsilon$ such that $exp_q:B_{epsilon}(0)rightarrow M$ is a diffeomorphism.
In DoCarmo’s Riemannian Geometry book, it has been written that for $M=mathbb R^n$, this map $exp_q$ is the identity map, while $exp_q(v)=q+v$. So what does DoCarmo mean?







riemannian-geometry smooth-manifolds






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 1:09









Batominovski

33k33293




33k33293










asked Dec 17 '18 at 1:04









User12239User12239

453216




453216












  • $begingroup$
    What's your definition of the tangent space $T_qmathbb{R}^n$?
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:12










  • $begingroup$
    I identify it with $mathbb R^n$ itself. Why?
    $endgroup$
    – User12239
    Dec 17 '18 at 1:13






  • 1




    $begingroup$
    Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:17










  • $begingroup$
    Thanks, I got what he meant now @DanteGrevino
    $endgroup$
    – User12239
    Dec 17 '18 at 1:19


















  • $begingroup$
    What's your definition of the tangent space $T_qmathbb{R}^n$?
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:12










  • $begingroup$
    I identify it with $mathbb R^n$ itself. Why?
    $endgroup$
    – User12239
    Dec 17 '18 at 1:13






  • 1




    $begingroup$
    Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
    $endgroup$
    – Dante Grevino
    Dec 17 '18 at 1:17










  • $begingroup$
    Thanks, I got what he meant now @DanteGrevino
    $endgroup$
    – User12239
    Dec 17 '18 at 1:19
















$begingroup$
What's your definition of the tangent space $T_qmathbb{R}^n$?
$endgroup$
– Dante Grevino
Dec 17 '18 at 1:12




$begingroup$
What's your definition of the tangent space $T_qmathbb{R}^n$?
$endgroup$
– Dante Grevino
Dec 17 '18 at 1:12












$begingroup$
I identify it with $mathbb R^n$ itself. Why?
$endgroup$
– User12239
Dec 17 '18 at 1:13




$begingroup$
I identify it with $mathbb R^n$ itself. Why?
$endgroup$
– User12239
Dec 17 '18 at 1:13




1




1




$begingroup$
Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
$endgroup$
– Dante Grevino
Dec 17 '18 at 1:17




$begingroup$
Some people think in $T_qmathbb{R}^n$ as the affine space $q + mathbb{R}^n$ with the linear structure $(q+v)+(q+w)=q+(v+w)$ and $lambda (q+v)=q+lambda v$ for every $v,winmathbb{R}^n$ and $lambdainmathbb{R}$.
$endgroup$
– Dante Grevino
Dec 17 '18 at 1:17












$begingroup$
Thanks, I got what he meant now @DanteGrevino
$endgroup$
– User12239
Dec 17 '18 at 1:19




$begingroup$
Thanks, I got what he meant now @DanteGrevino
$endgroup$
– User12239
Dec 17 '18 at 1:19










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043422%2fwhy-is-the-exponential-map-clearly-the-identity-map-for-mathbb-rn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043422%2fwhy-is-the-exponential-map-clearly-the-identity-map-for-mathbb-rn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei