Application of p-adic valuation
$begingroup$
Happy new year, I need help with solving the following problem
Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.
i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$
ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.
i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$
Thanks in advance for any help.
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Happy new year, I need help with solving the following problem
Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.
i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$
ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.
i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$
Thanks in advance for any help.
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Happy new year, I need help with solving the following problem
Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.
i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$
ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.
i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$
Thanks in advance for any help.
abstract-algebra
$endgroup$
Happy new year, I need help with solving the following problem
Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.
i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$
ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.
i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$
Thanks in advance for any help.
abstract-algebra
abstract-algebra
edited Jan 4 at 22:09
Manwell
asked Jan 4 at 20:38
ManwellManwell
114
114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.
Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.
thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$
Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062083%2fapplication-of-p-adic-valuation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.
Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.
thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$
Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$
$endgroup$
add a comment |
$begingroup$
Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.
Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.
thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$
Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$
$endgroup$
add a comment |
$begingroup$
Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.
Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.
thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$
Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$
$endgroup$
Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.
Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.
thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$
Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$
answered Jan 4 at 23:49
reunsreuns
21k21250
21k21250
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062083%2fapplication-of-p-adic-valuation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown