Application of p-adic valuation












0












$begingroup$


Happy new year, I need help with solving the following problem



Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.



i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$



ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.



i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$



Thanks in advance for any help.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Happy new year, I need help with solving the following problem



    Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.



    i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$



    ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.



    i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$



    Thanks in advance for any help.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Happy new year, I need help with solving the following problem



      Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.



      i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$



      ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.



      i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$



      Thanks in advance for any help.










      share|cite|improve this question











      $endgroup$




      Happy new year, I need help with solving the following problem



      Let $p$ be a prime number, $f(X)=sumlimits_{i=0}^na_{i}X^{i}in mathbb{Q}[X]$ and $c_{p}(f):=min{v_{p}(a_{i})|i=0,...,n}$, $v_{p}:mathbb{Q}to mathbb{Z}cup{ infty}$ is the unique extension of the p-adic valuation.



      i) For $g,hin mathbb{Q}[X]$ the following holds: $c_{p}(g*h)=c_{p}(g)+c_{p}(h)$



      ii) $f(X)in mathbb{Q}[X]$ is in $mathbb{Z}[X]$ if and only if $c_p(f)geq0$ for all prime numbers $p$.



      i) I know that I have to find a $r$ such that $v_{p}(d_r)=c_{p}(g)+c_{p}(h)$ holds but I'm not sure how to do that. $d_{j}=sumlimits_{i=0}^ja_{i}b_{j-i}$, this is obtained by multiplying two elements $g,hin mathbb{Q}[X]$, $g(X)=sumlimits_{i=0}^na_{i}X^{i}$, $h(X)=sumlimits_{i=0}^mb_{i}X^{i}$, and we get $(g*h)(X)=sumlimits_{i=0}^{n+m}d_{i}X^{i}.$



      Thanks in advance for any help.







      abstract-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 22:09







      Manwell

















      asked Jan 4 at 20:38









      ManwellManwell

      114




      114






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.



          Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
          with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.



          thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$





          Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062083%2fapplication-of-p-adic-valuation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.



            Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
            with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.



            thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$





            Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.



              Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
              with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.



              thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$





              Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.



                Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
                with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.



                thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$





                Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$






                share|cite|improve this answer









                $endgroup$



                Let $U_1,U_2 in mathbb{Z}[X]$. Iff $c_p(U_j) = k_j$ then $$U_j(X) = p^{k_j} (a_j X^{n_j}+ V_j(X))+p^{k_j+1} W_j(X)$$ with $V_j,W_j in mathbb{Z}[X],deg(V_j) < n_j, p nmid a_j$.



                Then $$U_1(X)U_2(X) = p^{k_1+k_2}(a_1 a_2 X^{n_1+n_2}+V_3(X)) + p^{k_1+k_2+1} W_3(X)$$
                with $V_3,W_3 in mathbb{Z}[X],deg(V_3) < n_1+n_2, p nmid a_1a_2$.



                thus $$c_p(U_1U_2) = k_1+k_2 = c_p(U_1)+c_p(U_2)$$





                Note we can state it with the big-O notation : if $U_j(X) = p^{k_j} a_j X^{n_j} + O(p^{k_j} X^{n_j-1})+O(p^{k_j+1})$ then $U_1(X)U_2(X) = p^{k_1+k_2} a_1a_2 X^{n_1+n_2} + O(p^{k_1+k_2} X^{n_1+n_2-1})+O(p^{k_1+k_2+1})$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 4 at 23:49









                reunsreuns

                21k21250




                21k21250






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062083%2fapplication-of-p-adic-valuation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei