Defining multiple functions
up vote
4
down vote
favorite
I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":
matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
3 u2 + 1. v2)}}
in other words, in order to define a function for each element I have to manually specify the functions:
eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];
(Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).
I tried:
Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]
but that does not seem to work. Or at least I don't get how to access eq now:
eq[1, 1]
does not work. Any help appreciated.
functions function-construction
add a comment |
up vote
4
down vote
favorite
I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":
matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
3 u2 + 1. v2)}}
in other words, in order to define a function for each element I have to manually specify the functions:
eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];
(Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).
I tried:
Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]
but that does not seem to work. Or at least I don't get how to access eq now:
eq[1, 1]
does not work. Any help appreciated.
functions function-construction
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":
matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
3 u2 + 1. v2)}}
in other words, in order to define a function for each element I have to manually specify the functions:
eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];
(Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).
I tried:
Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]
but that does not seem to work. Or at least I don't get how to access eq now:
eq[1, 1]
does not work. Any help appreciated.
functions function-construction
I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":
matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
3 u2 + 1. v2)}}
in other words, in order to define a function for each element I have to manually specify the functions:
eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];
(Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).
I tried:
Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]
but that does not seem to work. Or at least I don't get how to access eq now:
eq[1, 1]
does not work. Any help appreciated.
functions function-construction
functions function-construction
asked 2 hours ago
holistic
1,204620
1,204620
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
5
down vote
accepted
matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
(-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
{(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
(-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};
Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];
?eq
(definitions displayed)
Evaluation examples
eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]
0.5
Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]
{{0.5, -1.5}, {12.4, -5.8}}
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187948%2fdefining-multiple-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
(-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
{(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
(-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};
Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];
?eq
(definitions displayed)
Evaluation examples
eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]
0.5
Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]
{{0.5, -1.5}, {12.4, -5.8}}
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
add a comment |
up vote
5
down vote
accepted
matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
(-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
{(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
(-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};
Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];
?eq
(definitions displayed)
Evaluation examples
eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]
0.5
Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]
{{0.5, -1.5}, {12.4, -5.8}}
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
(-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
{(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
(-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};
Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];
?eq
(definitions displayed)
Evaluation examples
eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]
0.5
Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]
{{0.5, -1.5}, {12.4, -5.8}}
matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
(-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
{(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
(-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};
Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];
?eq
(definitions displayed)
Evaluation examples
eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]
0.5
Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]
{{0.5, -1.5}, {12.4, -5.8}}
edited 1 hour ago
answered 1 hour ago
Chris Degnen
21.8k23584
21.8k23584
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
add a comment |
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
Ah I see..well I was close :). Thank you!
– holistic
1 hour ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187948%2fdefining-multiple-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown