For a sequence $(a_n)$ of real numbers, $sum_{n=1}^infty |a_{n+1}-a_n|$ converges implies...












1












$begingroup$


I know that when the series $sum_{n=1}^infty |a_{n+1}-a_n|$ converges, then we have $|a_{n+1}-a_n|rightarrow 0$

So by using this I was going to prove that the sequence $a_n$ is Cauchy. But couldn't come up with a correct way.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I know that when the series $sum_{n=1}^infty |a_{n+1}-a_n|$ converges, then we have $|a_{n+1}-a_n|rightarrow 0$

    So by using this I was going to prove that the sequence $a_n$ is Cauchy. But couldn't come up with a correct way.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I know that when the series $sum_{n=1}^infty |a_{n+1}-a_n|$ converges, then we have $|a_{n+1}-a_n|rightarrow 0$

      So by using this I was going to prove that the sequence $a_n$ is Cauchy. But couldn't come up with a correct way.










      share|cite|improve this question











      $endgroup$




      I know that when the series $sum_{n=1}^infty |a_{n+1}-a_n|$ converges, then we have $|a_{n+1}-a_n|rightarrow 0$

      So by using this I was going to prove that the sequence $a_n$ is Cauchy. But couldn't come up with a correct way.







      real-analysis sequences-and-series convergence cauchy-sequences






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 5 at 20:54









      Davide Giraudo

      127k16154268




      127k16154268










      asked Jan 5 at 20:31









      DD90DD90

      2648




      2648






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Hint: For every $n geq 0$, $p geq 0$, $$|a_{n+p}-a_n| leq sum_{k=n}^{infty}{|a_{k+1}-a_k|}.$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Can you please explain more.
            $endgroup$
            – DD90
            Jan 5 at 20:50










          • $begingroup$
            Triangle inequality.
            $endgroup$
            – Math1000
            Jan 5 at 20:51










          • $begingroup$
            Yes. But how does this leads to the convergence of the sequence?
            $endgroup$
            – DD90
            Jan 5 at 20:51












          • $begingroup$
            This proves $(a_n)$ to be Cauchy.
            $endgroup$
            – Mindlack
            Jan 5 at 20:52










          • $begingroup$
            Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
            $endgroup$
            – DD90
            Jan 5 at 20:56





















          0












          $begingroup$

          $S_n:=sum_{k=1}^{n}|a_{k+1}-a_{k}|.$



          Since $S_n$ converges , $S_n$ is Cauchy.



          $epsilon >0$ given, there exists a $n_0$ s.t. for $m ge n ge n_0$



          $|S_m-S_n| =|sum_{k=n+1}^{m}|a_{k+1}-a_{k}||$



          $=sum_{k=n+1}^{m}|a_{k+1}-a_k| < epsilon.$



          Show that $(a_n)_{n in mathbb{N}}$ is Cauchy.



          For $m ge n ge (n_0 +1)$ we have:



          $|a_m-a_n| le |a_m-a_{m-1}| +..$



          $|a_{m-1}-a_{m-2}|+.......|a_{n+1}-a_n| $



          $=S_{m-1}-S_{n-1} lt epsilon.$



          Hence Cauchy, hence convergent.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063159%2ffor-a-sequence-a-n-of-real-numbers-sum-n-1-infty-a-n1-a-n-conver%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Hint: For every $n geq 0$, $p geq 0$, $$|a_{n+p}-a_n| leq sum_{k=n}^{infty}{|a_{k+1}-a_k|}.$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Can you please explain more.
              $endgroup$
              – DD90
              Jan 5 at 20:50










            • $begingroup$
              Triangle inequality.
              $endgroup$
              – Math1000
              Jan 5 at 20:51










            • $begingroup$
              Yes. But how does this leads to the convergence of the sequence?
              $endgroup$
              – DD90
              Jan 5 at 20:51












            • $begingroup$
              This proves $(a_n)$ to be Cauchy.
              $endgroup$
              – Mindlack
              Jan 5 at 20:52










            • $begingroup$
              Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
              $endgroup$
              – DD90
              Jan 5 at 20:56


















            4












            $begingroup$

            Hint: For every $n geq 0$, $p geq 0$, $$|a_{n+p}-a_n| leq sum_{k=n}^{infty}{|a_{k+1}-a_k|}.$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Can you please explain more.
              $endgroup$
              – DD90
              Jan 5 at 20:50










            • $begingroup$
              Triangle inequality.
              $endgroup$
              – Math1000
              Jan 5 at 20:51










            • $begingroup$
              Yes. But how does this leads to the convergence of the sequence?
              $endgroup$
              – DD90
              Jan 5 at 20:51












            • $begingroup$
              This proves $(a_n)$ to be Cauchy.
              $endgroup$
              – Mindlack
              Jan 5 at 20:52










            • $begingroup$
              Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
              $endgroup$
              – DD90
              Jan 5 at 20:56
















            4












            4








            4





            $begingroup$

            Hint: For every $n geq 0$, $p geq 0$, $$|a_{n+p}-a_n| leq sum_{k=n}^{infty}{|a_{k+1}-a_k|}.$$






            share|cite|improve this answer









            $endgroup$



            Hint: For every $n geq 0$, $p geq 0$, $$|a_{n+p}-a_n| leq sum_{k=n}^{infty}{|a_{k+1}-a_k|}.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 5 at 20:42









            MindlackMindlack

            4,885210




            4,885210








            • 1




              $begingroup$
              Can you please explain more.
              $endgroup$
              – DD90
              Jan 5 at 20:50










            • $begingroup$
              Triangle inequality.
              $endgroup$
              – Math1000
              Jan 5 at 20:51










            • $begingroup$
              Yes. But how does this leads to the convergence of the sequence?
              $endgroup$
              – DD90
              Jan 5 at 20:51












            • $begingroup$
              This proves $(a_n)$ to be Cauchy.
              $endgroup$
              – Mindlack
              Jan 5 at 20:52










            • $begingroup$
              Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
              $endgroup$
              – DD90
              Jan 5 at 20:56
















            • 1




              $begingroup$
              Can you please explain more.
              $endgroup$
              – DD90
              Jan 5 at 20:50










            • $begingroup$
              Triangle inequality.
              $endgroup$
              – Math1000
              Jan 5 at 20:51










            • $begingroup$
              Yes. But how does this leads to the convergence of the sequence?
              $endgroup$
              – DD90
              Jan 5 at 20:51












            • $begingroup$
              This proves $(a_n)$ to be Cauchy.
              $endgroup$
              – Mindlack
              Jan 5 at 20:52










            • $begingroup$
              Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
              $endgroup$
              – DD90
              Jan 5 at 20:56










            1




            1




            $begingroup$
            Can you please explain more.
            $endgroup$
            – DD90
            Jan 5 at 20:50




            $begingroup$
            Can you please explain more.
            $endgroup$
            – DD90
            Jan 5 at 20:50












            $begingroup$
            Triangle inequality.
            $endgroup$
            – Math1000
            Jan 5 at 20:51




            $begingroup$
            Triangle inequality.
            $endgroup$
            – Math1000
            Jan 5 at 20:51












            $begingroup$
            Yes. But how does this leads to the convergence of the sequence?
            $endgroup$
            – DD90
            Jan 5 at 20:51






            $begingroup$
            Yes. But how does this leads to the convergence of the sequence?
            $endgroup$
            – DD90
            Jan 5 at 20:51














            $begingroup$
            This proves $(a_n)$ to be Cauchy.
            $endgroup$
            – Mindlack
            Jan 5 at 20:52




            $begingroup$
            This proves $(a_n)$ to be Cauchy.
            $endgroup$
            – Mindlack
            Jan 5 at 20:52












            $begingroup$
            Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
            $endgroup$
            – DD90
            Jan 5 at 20:56






            $begingroup$
            Seems like I'm missing a theory? I'm sorry but still don't get it.. Why does the above inequality says that $forall epsilon >0, exists Ninmathbb{N}$ such that for $p>0$ and $n>N$, $|a_{n+p}-a_n|<epsilon$ ?
            $endgroup$
            – DD90
            Jan 5 at 20:56













            0












            $begingroup$

            $S_n:=sum_{k=1}^{n}|a_{k+1}-a_{k}|.$



            Since $S_n$ converges , $S_n$ is Cauchy.



            $epsilon >0$ given, there exists a $n_0$ s.t. for $m ge n ge n_0$



            $|S_m-S_n| =|sum_{k=n+1}^{m}|a_{k+1}-a_{k}||$



            $=sum_{k=n+1}^{m}|a_{k+1}-a_k| < epsilon.$



            Show that $(a_n)_{n in mathbb{N}}$ is Cauchy.



            For $m ge n ge (n_0 +1)$ we have:



            $|a_m-a_n| le |a_m-a_{m-1}| +..$



            $|a_{m-1}-a_{m-2}|+.......|a_{n+1}-a_n| $



            $=S_{m-1}-S_{n-1} lt epsilon.$



            Hence Cauchy, hence convergent.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              $S_n:=sum_{k=1}^{n}|a_{k+1}-a_{k}|.$



              Since $S_n$ converges , $S_n$ is Cauchy.



              $epsilon >0$ given, there exists a $n_0$ s.t. for $m ge n ge n_0$



              $|S_m-S_n| =|sum_{k=n+1}^{m}|a_{k+1}-a_{k}||$



              $=sum_{k=n+1}^{m}|a_{k+1}-a_k| < epsilon.$



              Show that $(a_n)_{n in mathbb{N}}$ is Cauchy.



              For $m ge n ge (n_0 +1)$ we have:



              $|a_m-a_n| le |a_m-a_{m-1}| +..$



              $|a_{m-1}-a_{m-2}|+.......|a_{n+1}-a_n| $



              $=S_{m-1}-S_{n-1} lt epsilon.$



              Hence Cauchy, hence convergent.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                $S_n:=sum_{k=1}^{n}|a_{k+1}-a_{k}|.$



                Since $S_n$ converges , $S_n$ is Cauchy.



                $epsilon >0$ given, there exists a $n_0$ s.t. for $m ge n ge n_0$



                $|S_m-S_n| =|sum_{k=n+1}^{m}|a_{k+1}-a_{k}||$



                $=sum_{k=n+1}^{m}|a_{k+1}-a_k| < epsilon.$



                Show that $(a_n)_{n in mathbb{N}}$ is Cauchy.



                For $m ge n ge (n_0 +1)$ we have:



                $|a_m-a_n| le |a_m-a_{m-1}| +..$



                $|a_{m-1}-a_{m-2}|+.......|a_{n+1}-a_n| $



                $=S_{m-1}-S_{n-1} lt epsilon.$



                Hence Cauchy, hence convergent.






                share|cite|improve this answer









                $endgroup$



                $S_n:=sum_{k=1}^{n}|a_{k+1}-a_{k}|.$



                Since $S_n$ converges , $S_n$ is Cauchy.



                $epsilon >0$ given, there exists a $n_0$ s.t. for $m ge n ge n_0$



                $|S_m-S_n| =|sum_{k=n+1}^{m}|a_{k+1}-a_{k}||$



                $=sum_{k=n+1}^{m}|a_{k+1}-a_k| < epsilon.$



                Show that $(a_n)_{n in mathbb{N}}$ is Cauchy.



                For $m ge n ge (n_0 +1)$ we have:



                $|a_m-a_n| le |a_m-a_{m-1}| +..$



                $|a_{m-1}-a_{m-2}|+.......|a_{n+1}-a_n| $



                $=S_{m-1}-S_{n-1} lt epsilon.$



                Hence Cauchy, hence convergent.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 5 at 22:28









                Peter SzilasPeter Szilas

                11.4k2822




                11.4k2822






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063159%2ffor-a-sequence-a-n-of-real-numbers-sum-n-1-infty-a-n1-a-n-conver%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei