Some more basics on group operation












4












$begingroup$


Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.



On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).



This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.



I ask the following:




  1. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?

  2. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?


(by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.



    On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).



    This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.



    I ask the following:




    1. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?

    2. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?


    (by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      2



      $begingroup$


      Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.



      On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).



      This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.



      I ask the following:




      1. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?

      2. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?


      (by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).










      share|cite|improve this question









      $endgroup$




      Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.



      On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).



      This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.



      I ask the following:




      1. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?

      2. what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?


      (by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).







      abstract-algebra group-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 5 at 21:16









      LucaLuca

      27319




      27319






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.



          So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
          $$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$



          Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.



          For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
          $$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
          Proof:




          • If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.


          • On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets



          Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.





          Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
          Such $a,b$ exist whenever $[G:H]>2$. Therefore,
          $$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
            $endgroup$
            – Luca
            Jan 7 at 20:14













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063201%2fsome-more-basics-on-group-operation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.



          So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
          $$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$



          Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.



          For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
          $$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
          Proof:




          • If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.


          • On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets



          Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.





          Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
          Such $a,b$ exist whenever $[G:H]>2$. Therefore,
          $$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
            $endgroup$
            – Luca
            Jan 7 at 20:14


















          4












          $begingroup$

          Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.



          So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
          $$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$



          Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.



          For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
          $$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
          Proof:




          • If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.


          • On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets



          Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.





          Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
          Such $a,b$ exist whenever $[G:H]>2$. Therefore,
          $$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
            $endgroup$
            – Luca
            Jan 7 at 20:14
















          4












          4








          4





          $begingroup$

          Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.



          So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
          $$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$



          Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.



          For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
          $$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
          Proof:




          • If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.


          • On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets



          Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.





          Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
          Such $a,b$ exist whenever $[G:H]>2$. Therefore,
          $$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$






          share|cite|improve this answer











          $endgroup$



          Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.



          So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
          $$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$



          Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.



          For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
          $$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
          Proof:




          • If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.


          • On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets



          Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.





          Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
          Such $a,b$ exist whenever $[G:H]>2$. Therefore,
          $$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 5 at 21:57

























          answered Jan 5 at 21:45









          Hagen von EitzenHagen von Eitzen

          282k23272507




          282k23272507












          • $begingroup$
            I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
            $endgroup$
            – Luca
            Jan 7 at 20:14




















          • $begingroup$
            I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
            $endgroup$
            – Luca
            Jan 7 at 20:14


















          $begingroup$
          I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
          $endgroup$
          – Luca
          Jan 7 at 20:14






          $begingroup$
          I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
          $endgroup$
          – Luca
          Jan 7 at 20:14




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063201%2fsome-more-basics-on-group-operation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei