Some more basics on group operation
$begingroup$
Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.
On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).
This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.
I ask the following:
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?
(by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.
On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).
This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.
I ask the following:
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?
(by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.
On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).
This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.
I ask the following:
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?
(by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).
abstract-algebra group-theory
$endgroup$
Let $G$ be a group, $H le G$ and $f colon G times G rightarrow G$ the group operation. We know that $complement_GH$ (the complement of $H$ in $G$) contains the inverse of any of its elements, so, whatever $G$ and $H$ are, $lbrace e rbrace subseteq f(complement_GH times complement_GH)$.
On the other hand, if we take $G=(mathbb{Z},+)$ and $H=2 mathbb{Z}$, we get that $f(complement_GH times complement_GH)=H$, because by summing pairwise all the odd integers we get all the even integers (and them, only).
This makes me conclude that, in general, at least the following holds: $lbrace e rbrace subseteq f(complement_GH times complement_GH) cap H subseteq H$.
I ask the following:
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=lbrace e rbrace$, if any?
- what's the characterization of $H$ and/or $G$ to get $f(complement_GH times complement_GH)=H$?
(by "characterization of $H$ and/or $G$" I mean something like, e.g., "$H$ normal in $G$", or the like).
abstract-algebra group-theory
abstract-algebra group-theory
asked Jan 5 at 21:16
LucaLuca
27319
27319
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.
So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
$$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$
Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.
For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
$$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
Proof:
If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.
On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets
Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.
Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
Such $a,b$ exist whenever $[G:H]>2$. Therefore,
$$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$
$endgroup$
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063201%2fsome-more-basics-on-group-operation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.
So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
$$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$
Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.
For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
$$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
Proof:
If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.
On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets
Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.
Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
Such $a,b$ exist whenever $[G:H]>2$. Therefore,
$$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$
$endgroup$
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
add a comment |
$begingroup$
Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.
So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
$$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$
Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.
For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
$$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
Proof:
If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.
On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets
Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.
Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
Such $a,b$ exist whenever $[G:H]>2$. Therefore,
$$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$
$endgroup$
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
add a comment |
$begingroup$
Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.
So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
$$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$
Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.
For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
$$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
Proof:
If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.
On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets
Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.
Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
Such $a,b$ exist whenever $[G:H]>2$. Therefore,
$$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$
$endgroup$
Note that you should begin with $H<G$ instead of $Hle G$, as $H=G$ certainly makes $f(complement_GH times complement_GH)=emptyset$.
So assume $H<G$. If we pick $ain complement_GH$, then for any $hin H$, we have $ha^{-1}notin H$ and hence $h=ha^{-1}cdot ain f(complement_GH times complement_GH)$. This make
$$Hsubseteq f(complement_GH times complement_GH)qquad text{if }H<G. $$
Consequently, the situation in your first question occurs iff $H={e}$ and the situation in your second question occurs.
For the second part, in order to obtain only $H$, the case $ha^{-1}cdot a$ we used above must be "essentially" the only one. Indeed,
$$H= f(complement_GH times complement_GH)iff[G:H]=2.$$
Proof:
If $H$ is of index 2, pick $ain Gsetminus H$ such that Then if $x,yincomplement_GH$, we have $h_1:=xain H$, $h_2:=a^{-1}yin H$ and so $xy=xaa^{-1}y=h_1h_2in H$.
On the other hand, if $f(complement_GH times complement_GH)=H$, then we already know $Hne G$. If $a,bincomplement_GH$, it follows that $a^2in H$ and $abin H$, hence $a^2H=abH$ and thereby $aH=bH$, i.e., there are only two cosets
Back to the first question: We have $f(complement_GH times complement_GH)={e}$ iff $G$ is of order $2$ and $H$ the trivial subgroup.
Generalization: If there exist $a,bincomplement_GH$ with $abnotin H$, then $f(complement_GH times complement_GH)=G$. Indeed, If $gin G$, then at least one of $ag$, $b^{-1}g$ is $notin H$ because otherwise also $ab=ag(b^{-1}g)^{-1}in H$. We conclude $g=a^{-1}cdot ag=bcdot b^{-1}agin f(complement_GH times complement_GH)$.
Such $a,b$ exist whenever $[G:H]>2$. Therefore,
$$f(complement_GH times complement_GH)=begin{cases}emptyset&text{if }H=G\H&text{if }[G:H]=2\G&text{otherwise}end{cases}$$
edited Jan 5 at 21:57
answered Jan 5 at 21:45
Hagen von EitzenHagen von Eitzen
282k23272507
282k23272507
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
add a comment |
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
$begingroup$
I'd be interested, for the case $G$ finite, on the cardinality of the set $f^{leftarrow}(H) cap (complement_GH times complement_GH)$, in the case $[G:H]>2$. How could we express this integer? Thanks.-
$endgroup$
– Luca
Jan 7 at 20:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063201%2fsome-more-basics-on-group-operation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown