Evaluation of contour integration help involving exponential and cosh$z$











up vote
1
down vote

favorite
1












Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



This is what Ive done so far



let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



$dz$ = $2ie^{itheta}$$dtheta$



So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



Is this the best way to do this question and where do i go from here?



Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    1












    Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



    Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



    This is what Ive done so far



    let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



    $dz$ = $2ie^{itheta}$$dtheta$



    So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



    Is this the best way to do this question and where do i go from here?



    Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



      Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



      This is what Ive done so far



      let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



      $dz$ = $2ie^{itheta}$$dtheta$



      So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



      Is this the best way to do this question and where do i go from here?



      Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










      share|cite|improve this question















      Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



      Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



      This is what Ive done so far



      let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



      $dz$ = $2ie^{itheta}$$dtheta$



      So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



      Is this the best way to do this question and where do i go from here?



      Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2







      contour-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 18 at 7:34

























      asked Nov 18 at 5:58









      sam

      448




      448



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003180%2fevaluation-of-contour-integration-help-involving-exponential-and-coshz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003180%2fevaluation-of-contour-integration-help-involving-exponential-and-coshz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei