Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such...











up vote
1
down vote

favorite













Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.






Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.



We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.





Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.



For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.










share|cite|improve this question




























    up vote
    1
    down vote

    favorite













    Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.






    Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





    My attempt:



    Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.



    We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.





    Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.



    For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite












      Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.






      Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





      My attempt:



      Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.



      We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.





      Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.



      For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.










      share|cite|improve this question
















      Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.






      Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





      My attempt:



      Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.



      We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.





      Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.



      For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.







      proof-verification elementary-set-theory ordinals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 18 at 9:07

























      asked Nov 18 at 5:58









      Le Anh Dung

      9381421




      9381421






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          The argument for $xi$ not being a limit is more clearly written as follows, I think:



          If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.



          So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.



          Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.



          And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that




          $beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,




          and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003179%2flet-alpha-gamma-be-ordinals-such-that-0-alpha-le-gamma-then-there-is-a-g%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            The argument for $xi$ not being a limit is more clearly written as follows, I think:



            If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.



            So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.



            Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.



            And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that




            $beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,




            and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.






            share|cite|improve this answer



























              up vote
              1
              down vote



              accepted










              The argument for $xi$ not being a limit is more clearly written as follows, I think:



              If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.



              So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.



              Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.



              And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that




              $beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,




              and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                The argument for $xi$ not being a limit is more clearly written as follows, I think:



                If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.



                So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.



                Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.



                And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that




                $beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,




                and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.






                share|cite|improve this answer














                The argument for $xi$ not being a limit is more clearly written as follows, I think:



                If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.



                So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.



                Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.



                And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that




                $beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,




                and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 18 at 6:49

























                answered Nov 18 at 6:43









                Henno Brandsma

                102k344108




                102k344108






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003179%2flet-alpha-gamma-be-ordinals-such-that-0-alpha-le-gamma-then-there-is-a-g%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei