Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such...
up vote
1
down vote
favorite
Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.
We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
proof-verification elementary-set-theory ordinals
add a comment |
up vote
1
down vote
favorite
Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.
We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
proof-verification elementary-set-theory ordinals
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.
We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
proof-verification elementary-set-theory ordinals
Let $alpha,gamma$ be ordinals such that $0<alphalegamma$. Then there is a greatest ordinal $beta$ such that $alphacdotbetalegamma$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Let $A={delta in {rm Ord} mid alpha cdot delta > gamma}$. Since $alphacdot(gamma+1)=alphacdotgamma+alpha>alphacdotgammagegamma$, $gamma+1in A$ and thus $Aneqemptyset$. Let $xi=min A$.
We next prove that $xi$ is a successor ordinal. Assume the contrary that $xi$ is a limit ordinal, then $alphacdotxi=sup_{eta<xi}(alphacdoteta)>gamma$. Then $alphacdoteta>gamma$ for some $eta<xi$. Thus $etain A$ and $eta<xi$. This contradicts the minimality of $xi$. Hence $xi$ is a successor ordinal and $xi=beta+1$. Then $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
Update: I add the proof of $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
For $delta>beta$: $deltagebeta+1=xiimpliesalpha cdotdeltagealpha cdotxi>gammaimpliesalpha cdotdelta>gammaimplies$ $deltanotin{delta in {rm Ord} mid alpha cdot delta le gamma}$. Moreover, $betain{delta in {rm Ord} mid alpha cdot delta le gamma}$. Hence $beta=max{delta in {rm Ord} mid alpha cdot delta le gamma}$.
proof-verification elementary-set-theory ordinals
proof-verification elementary-set-theory ordinals
edited Nov 18 at 9:07
asked Nov 18 at 5:58
Le Anh Dung
9381421
9381421
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
The argument for $xi$ not being a limit is more clearly written as follows, I think:
If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.
So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.
Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.
And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that
$beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,
and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
The argument for $xi$ not being a limit is more clearly written as follows, I think:
If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.
So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.
Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.
And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that
$beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,
and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.
add a comment |
up vote
1
down vote
accepted
The argument for $xi$ not being a limit is more clearly written as follows, I think:
If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.
So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.
Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.
And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that
$beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,
and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
The argument for $xi$ not being a limit is more clearly written as follows, I think:
If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.
So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.
Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.
And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that
$beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,
and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.
The argument for $xi$ not being a limit is more clearly written as follows, I think:
If $xi$ is a limit ordinal, then by minimality of $xi$, $alpha cdot delta le gamma$ for all $delta < xi$, as $delta notin A$, and so $alpha cdot xi = sup{alpha cdot delta : delta < xi}le gamma$, which contradicts $alpha cdot xi > gamma$.
So $xi = beta+1$ I agree with, but you have not yet shown that $beta$ is then as required, you just claim so, without an argument.
Well, $beta < xi$ already gives $alpha cdot beta le gamma$, by minimality, so $beta in {delta in text{Ord}: alpha cdot delta le gamma}$.
And if $beta' > beta$ we know $beta' ge beta+1= xi$ so we need to have the lemma that
$beta ge beta'$ implies $alpha cdot beta ge alpha cdot beta'$ for any fixed $alpha$,
and this can quite easily be shown by transfinite induction. (It might be in your text already). Having this as a lemma, we can say $beta' > beta$ then $beta' ge xi$ and $alpha cdot beta' ge alpha cdot xi > gamma$ and so $beta' notin {delta in text{Ord}: alpha cdot delta le gamma}$ and $beta$ is indeed maximal.
edited Nov 18 at 6:49
answered Nov 18 at 6:43
Henno Brandsma
102k344108
102k344108
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003179%2flet-alpha-gamma-be-ordinals-such-that-0-alpha-le-gamma-then-there-is-a-g%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown