Prove that...











up vote
1
down vote

favorite
4












I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question




















  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 at 7:21















up vote
1
down vote

favorite
4












I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question




















  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 at 7:21













up vote
1
down vote

favorite
4









up vote
1
down vote

favorite
4






4





I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question















I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?







trigonometry trigonometric-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 18 at 6:41









idea

2,20121024




2,20121024










asked Nov 18 at 6:34









Peter

192




192








  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 at 7:21














  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 at 7:21








1




1




co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46






co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46






2




2




math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21




math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21










4 Answers
4






active

oldest

votes

















up vote
3
down vote













$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



We split them into two groups as shown:



$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)



$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



and



$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



Hence it remains to find



$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






share|cite|improve this answer






























    up vote
    2
    down vote













    I use degrees:
    $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
    frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
    frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
    frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
    cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
    frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
    frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
    frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
    $$

    You can see see here: $cos72^circ = cos36^circ-frac12$.






    share|cite|improve this answer




























      up vote
      1
      down vote













      Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




      1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

      2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

      3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


      Rest of the angles are possible to calculate with the double angle formula.



      99,9% not indended to be solved this way, but ...






      share|cite|improve this answer






























        up vote
        1
        down vote













        Hint:



        Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



        $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



        $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



        $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



        Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



        Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






        share|cite|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003208%2fprove-that-frac1-sin-frac-pi15-frac1-sin-frac2-pi15-frac1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote













          $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



          We split them into two groups as shown:



          $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
          And we see that (from sum-to-product and product-to-sum)



          $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



          and



          $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



          Hence it remains to find



          $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



          From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






          share|cite|improve this answer



























            up vote
            3
            down vote













            $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



            We split them into two groups as shown:



            $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
            And we see that (from sum-to-product and product-to-sum)



            $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



            and



            $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



            Hence it remains to find



            $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



            From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






            share|cite|improve this answer

























              up vote
              3
              down vote










              up vote
              3
              down vote









              $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



              We split them into two groups as shown:



              $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
              And we see that (from sum-to-product and product-to-sum)



              $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



              and



              $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



              Hence it remains to find



              $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



              From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






              share|cite|improve this answer














              $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



              We split them into two groups as shown:



              $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
              And we see that (from sum-to-product and product-to-sum)



              $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



              and



              $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



              Hence it remains to find



              $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



              From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 21 at 9:00

























              answered Nov 18 at 8:17









              Tralala

              739124




              739124






















                  up vote
                  2
                  down vote













                  I use degrees:
                  $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                  frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                  frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                  frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                  cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                  frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                  frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                  frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                  $$

                  You can see see here: $cos72^circ = cos36^circ-frac12$.






                  share|cite|improve this answer

























                    up vote
                    2
                    down vote













                    I use degrees:
                    $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                    frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                    frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                    frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                    cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                    frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                    frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                    frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                    $$

                    You can see see here: $cos72^circ = cos36^circ-frac12$.






                    share|cite|improve this answer























                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      I use degrees:
                      $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                      frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                      frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                      frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                      cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                      frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                      frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                      frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                      $$

                      You can see see here: $cos72^circ = cos36^circ-frac12$.






                      share|cite|improve this answer












                      I use degrees:
                      $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                      frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                      frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                      frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                      cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                      frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                      frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                      frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                      $$

                      You can see see here: $cos72^circ = cos36^circ-frac12$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 18 at 8:44









                      farruhota

                      17.8k2736




                      17.8k2736






















                          up vote
                          1
                          down vote













                          Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                          1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                          2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                          3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                          Rest of the angles are possible to calculate with the double angle formula.



                          99,9% not indended to be solved this way, but ...






                          share|cite|improve this answer



























                            up vote
                            1
                            down vote













                            Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                            1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                            2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                            3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                            Rest of the angles are possible to calculate with the double angle formula.



                            99,9% not indended to be solved this way, but ...






                            share|cite|improve this answer

























                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                              1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                              2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                              3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                              Rest of the angles are possible to calculate with the double angle formula.



                              99,9% not indended to be solved this way, but ...






                              share|cite|improve this answer














                              Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                              1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                              2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                              3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                              Rest of the angles are possible to calculate with the double angle formula.



                              99,9% not indended to be solved this way, but ...







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Nov 18 at 7:34

























                              answered Nov 18 at 7:29









                              Makina

                              1,004113




                              1,004113






















                                  up vote
                                  1
                                  down vote













                                  Hint:



                                  Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                  $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                  $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                  $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                  Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                  Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                  share|cite|improve this answer

























                                    up vote
                                    1
                                    down vote













                                    Hint:



                                    Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                    $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                    $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                    $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                    Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                    Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                    share|cite|improve this answer























                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      Hint:



                                      Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                      $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                      $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                      $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                      Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                      Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                      share|cite|improve this answer












                                      Hint:



                                      Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                      $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                      $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                      $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                      Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                      Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Nov 20 at 6:34









                                      lab bhattacharjee

                                      220k15154271




                                      220k15154271






























                                           

                                          draft saved


                                          draft discarded



















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003208%2fprove-that-frac1-sin-frac-pi15-frac1-sin-frac2-pi15-frac1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Quarter-circle Tiles

                                          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                                          Mont Emei