Prove that...
up vote
1
down vote
favorite
I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.
I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.
How to prove this equality?
trigonometry trigonometric-series
add a comment |
up vote
1
down vote
favorite
I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.
I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.
How to prove this equality?
trigonometry trigonometric-series
1
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
2
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.
I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.
How to prove this equality?
trigonometry trigonometric-series
I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.
I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.
How to prove this equality?
trigonometry trigonometric-series
trigonometry trigonometric-series
edited Nov 18 at 6:41
idea
2,20121024
2,20121024
asked Nov 18 at 6:34
Peter
192
192
1
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
2
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21
add a comment |
1
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
2
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21
1
1
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
2
2
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21
add a comment |
4 Answers
4
active
oldest
votes
up vote
3
down vote
$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$
We split them into two groups as shown:
$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)
$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$
and
$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$
Hence it remains to find
$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$
From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$
add a comment |
up vote
2
down vote
I use degrees:
$$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
$$
You can see see here: $cos72^circ = cos36^circ-frac12$.
add a comment |
up vote
1
down vote
Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...
- $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$
- $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$
- for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution
Rest of the angles are possible to calculate with the double angle formula.
99,9% not indended to be solved this way, but ...
add a comment |
up vote
1
down vote
Hint:
Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,
$$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$
$$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$
$cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$
Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$
Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$
We split them into two groups as shown:
$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)
$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$
and
$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$
Hence it remains to find
$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$
From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$
add a comment |
up vote
3
down vote
$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$
We split them into two groups as shown:
$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)
$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$
and
$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$
Hence it remains to find
$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$
From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$
add a comment |
up vote
3
down vote
up vote
3
down vote
$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$
We split them into two groups as shown:
$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)
$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$
and
$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$
Hence it remains to find
$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$
From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$
$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$
We split them into two groups as shown:
$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)
$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$
and
$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$
Hence it remains to find
$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$
From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$
edited Nov 21 at 9:00
answered Nov 18 at 8:17
Tralala
739124
739124
add a comment |
add a comment |
up vote
2
down vote
I use degrees:
$$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
$$
You can see see here: $cos72^circ = cos36^circ-frac12$.
add a comment |
up vote
2
down vote
I use degrees:
$$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
$$
You can see see here: $cos72^circ = cos36^circ-frac12$.
add a comment |
up vote
2
down vote
up vote
2
down vote
I use degrees:
$$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
$$
You can see see here: $cos72^circ = cos36^circ-frac12$.
I use degrees:
$$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
$$
You can see see here: $cos72^circ = cos36^circ-frac12$.
answered Nov 18 at 8:44
farruhota
17.8k2736
17.8k2736
add a comment |
add a comment |
up vote
1
down vote
Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...
- $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$
- $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$
- for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution
Rest of the angles are possible to calculate with the double angle formula.
99,9% not indended to be solved this way, but ...
add a comment |
up vote
1
down vote
Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...
- $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$
- $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$
- for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution
Rest of the angles are possible to calculate with the double angle formula.
99,9% not indended to be solved this way, but ...
add a comment |
up vote
1
down vote
up vote
1
down vote
Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...
- $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$
- $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$
- for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution
Rest of the angles are possible to calculate with the double angle formula.
99,9% not indended to be solved this way, but ...
Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...
- $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$
- $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$
- for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution
Rest of the angles are possible to calculate with the double angle formula.
99,9% not indended to be solved this way, but ...
edited Nov 18 at 7:34
answered Nov 18 at 7:29
Makina
1,004113
1,004113
add a comment |
add a comment |
up vote
1
down vote
Hint:
Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,
$$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$
$$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$
$cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$
Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$
Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$
add a comment |
up vote
1
down vote
Hint:
Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,
$$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$
$$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$
$cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$
Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$
Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$
add a comment |
up vote
1
down vote
up vote
1
down vote
Hint:
Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,
$$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$
$$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$
$cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$
Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$
Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$
Hint:
Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,
$$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$
$$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$
$cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$
Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$
Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$
answered Nov 20 at 6:34
lab bhattacharjee
220k15154271
220k15154271
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003208%2fprove-that-frac1-sin-frac-pi15-frac1-sin-frac2-pi15-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 at 6:46
2
math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 at 7:21