Hardy Littlewood maximal function $|h(x)|<|h^*(x)|$ for almost every x
up vote
0
down vote
favorite
Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.
Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$
I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then
$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.
My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.
Is my attempt coorect or is there any other way to approach? Please help
real-analysis integration measure-theory lebesgue-integral lebesgue-measure
add a comment |
up vote
0
down vote
favorite
Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.
Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$
I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then
$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.
My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.
Is my attempt coorect or is there any other way to approach? Please help
real-analysis integration measure-theory lebesgue-integral lebesgue-measure
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.
Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$
I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then
$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.
My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.
Is my attempt coorect or is there any other way to approach? Please help
real-analysis integration measure-theory lebesgue-integral lebesgue-measure
Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.
Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$
I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then
$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.
My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.
Is my attempt coorect or is there any other way to approach? Please help
real-analysis integration measure-theory lebesgue-integral lebesgue-measure
real-analysis integration measure-theory lebesgue-integral lebesgue-measure
asked Nov 16 at 23:25
Gimgim
705
705
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
This version of Lebesgue differentiation, which correctly stated is
$$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
$$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
Therefore, for almost every $x$,
$$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
This version of Lebesgue differentiation, which correctly stated is
$$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
$$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
Therefore, for almost every $x$,
$$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$
add a comment |
up vote
0
down vote
accepted
This version of Lebesgue differentiation, which correctly stated is
$$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
$$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
Therefore, for almost every $x$,
$$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
This version of Lebesgue differentiation, which correctly stated is
$$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
$$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
Therefore, for almost every $x$,
$$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$
This version of Lebesgue differentiation, which correctly stated is
$$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
$$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
Therefore, for almost every $x$,
$$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$
answered Nov 17 at 10:07
Calvin Khor
10.7k21436
10.7k21436
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001772%2fhardy-littlewood-maximal-function-hxhx-for-almost-every-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown