Hardy Littlewood maximal function $|h(x)|<|h^*(x)|$ for almost every x











up vote
0
down vote

favorite












Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.




Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$




I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then



$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.



My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.



Is my attempt coorect or is there any other way to approach? Please help










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.




    Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$




    I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then



    $lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.



    My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.



    Is my attempt coorect or is there any other way to approach? Please help










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.




      Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$




      I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then



      $lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.



      My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.



      Is my attempt coorect or is there any other way to approach? Please help










      share|cite|improve this question













      Suppose $h: Bbb R to : Bbb R$; Hardy Littlewood maximal function $h^*: Bbb R to [0, infty]$ defined by $h^*(x)=sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h|$.




      Now to prove $|h(x)|leq|h^*(x)|$ for almost every $x in Bbb R$




      I am thinking that I have to use Lebesgue differentiation theorem, first version that states "Suppose $fin L^{1}Bbb R$. Then



      $lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(b)|=0$ for all most all $b in Bbb R$.



      My attempt: $||h(x)|-|h^*(x)||leq |h(x)-h^*(x)|=|h(x)-sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(y)|dy|leq sup_{t>0}frac 1{2t}int_{x-t}^{x+t}|h(x)-h(y)|dy=0$ for almost every $x$. So, we get $|h(x)|leq h^*(x)$ for allmost every $x$.



      Is my attempt coorect or is there any other way to approach? Please help







      real-analysis integration measure-theory lebesgue-integral lebesgue-measure






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 at 23:25









      Gimgim

      705




      705






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          This version of Lebesgue differentiation, which correctly stated is
          $$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
          $$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
          Therefore, for almost every $x$,
          $$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001772%2fhardy-littlewood-maximal-function-hxhx-for-almost-every-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            This version of Lebesgue differentiation, which correctly stated is
            $$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
            $$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
            Therefore, for almost every $x$,
            $$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              This version of Lebesgue differentiation, which correctly stated is
              $$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
              $$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
              Therefore, for almost every $x$,
              $$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                This version of Lebesgue differentiation, which correctly stated is
                $$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
                $$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
                Therefore, for almost every $x$,
                $$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$






                share|cite|improve this answer












                This version of Lebesgue differentiation, which correctly stated is
                $$lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|=0 quad(text{a.e.} x)$$ immediately implies the weaker one ($frac1{2t}int_{x-t}^{x+t} f to f(x)$ a.e.) via triangle inequality
                $$ left| frac1{2t} int_{x-t}^{x+t} f(y) dy - f(x)right|le lim_{ t to 0}frac 1{2t}int_{x-t}^{x+t}|f-f(x)|to 0$$
                Therefore, for almost every $x$,
                $$ |f(x)| = lim_{tto 0}frac1{2t} int_{x-t}^{x+t } |f| le sup_{t> 0} frac1{2t} int_{x-t}^{x+t } |f| = f^*(x)$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 17 at 10:07









                Calvin Khor

                10.7k21436




                10.7k21436






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001772%2fhardy-littlewood-maximal-function-hxhx-for-almost-every-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei