Evaluate the $lim_{x to -infty} (x + sqrt{x^2 + 2x})$
up vote
6
down vote
favorite
Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$
I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.
This is what I've done so far
begin{align}
lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
\
end{align}
And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.
Plugging it into WolframAlpha shows that the correct answer is $-1$
Any suggestions on what to do next?
calculus limits radicals limits-without-lhopital
add a comment |
up vote
6
down vote
favorite
Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$
I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.
This is what I've done so far
begin{align}
lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
\
end{align}
And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.
Plugging it into WolframAlpha shows that the correct answer is $-1$
Any suggestions on what to do next?
calculus limits radicals limits-without-lhopital
add a comment |
up vote
6
down vote
favorite
up vote
6
down vote
favorite
Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$
I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.
This is what I've done so far
begin{align}
lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
\
end{align}
And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.
Plugging it into WolframAlpha shows that the correct answer is $-1$
Any suggestions on what to do next?
calculus limits radicals limits-without-lhopital
Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$
I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.
This is what I've done so far
begin{align}
lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
\
end{align}
And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.
Plugging it into WolframAlpha shows that the correct answer is $-1$
Any suggestions on what to do next?
calculus limits radicals limits-without-lhopital
calculus limits radicals limits-without-lhopital
edited May 4 '16 at 11:05
Martin Sleziak
44.6k7115269
44.6k7115269
asked May 1 '16 at 10:49
Perturbative
3,93011449
3,93011449
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
9
down vote
accepted
$$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$
add a comment |
up vote
0
down vote
HINT:
Set $-1/x=himplies hto0^+, h>0$
$x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$
Now rationalize the numerator to get
$$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
add a comment |
up vote
0
down vote
This is based on @Battani's answer but with a more in-depth explanation
begin{align}
lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
&text{Now because $sqrt{x^2}$ = $|x|$} \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
text{Recall that } & |x| = begin{cases}
x &text{ if } x geq 0\
- x &text{ if } x < 0\
end{cases}
\ \
&text{$x$ is approaching $-infty$} \ \
&therefore |x| = -x
\ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
&= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
&= -1
end{align}
add a comment |
up vote
0
down vote
This solution is probably flawed, but I will post this anyway.
Note that
$$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
$$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
$$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
$$=lim_{x to -infty} left(x pm (x+1)right)$$
$-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
$$lim_{x to -infty} left(x - (x+1)right)$$
$$=lim_{x to -infty} -1$$
$$=boxed{-1}.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1766582%2fevaluate-the-lim-x-to-infty-x-sqrtx2-2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
9
down vote
accepted
$$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$
add a comment |
up vote
9
down vote
accepted
$$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$
add a comment |
up vote
9
down vote
accepted
up vote
9
down vote
accepted
$$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$
$$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$
answered May 1 '16 at 10:54
haqnatural
20.6k72457
20.6k72457
add a comment |
add a comment |
up vote
0
down vote
HINT:
Set $-1/x=himplies hto0^+, h>0$
$x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$
Now rationalize the numerator to get
$$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
add a comment |
up vote
0
down vote
HINT:
Set $-1/x=himplies hto0^+, h>0$
$x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$
Now rationalize the numerator to get
$$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
add a comment |
up vote
0
down vote
up vote
0
down vote
HINT:
Set $-1/x=himplies hto0^+, h>0$
$x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$
Now rationalize the numerator to get
$$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$
HINT:
Set $-1/x=himplies hto0^+, h>0$
$x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$
Now rationalize the numerator to get
$$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$
edited May 1 '16 at 11:20
answered May 1 '16 at 10:53
lab bhattacharjee
222k15155273
222k15155273
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
add a comment |
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
Why not simply use *Taylor * at order $1$?
– Bernard
May 1 '16 at 11:04
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, and this result comes from the basic Limit rule
– lab bhattacharjee
May 1 '16 at 11:08
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
@Bernard, Please find the updated version
– lab bhattacharjee
May 1 '16 at 11:21
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
– Bernard
May 1 '16 at 11:31
add a comment |
up vote
0
down vote
This is based on @Battani's answer but with a more in-depth explanation
begin{align}
lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
&text{Now because $sqrt{x^2}$ = $|x|$} \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
text{Recall that } & |x| = begin{cases}
x &text{ if } x geq 0\
- x &text{ if } x < 0\
end{cases}
\ \
&text{$x$ is approaching $-infty$} \ \
&therefore |x| = -x
\ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
&= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
&= -1
end{align}
add a comment |
up vote
0
down vote
This is based on @Battani's answer but with a more in-depth explanation
begin{align}
lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
&text{Now because $sqrt{x^2}$ = $|x|$} \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
text{Recall that } & |x| = begin{cases}
x &text{ if } x geq 0\
- x &text{ if } x < 0\
end{cases}
\ \
&text{$x$ is approaching $-infty$} \ \
&therefore |x| = -x
\ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
&= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
&= -1
end{align}
add a comment |
up vote
0
down vote
up vote
0
down vote
This is based on @Battani's answer but with a more in-depth explanation
begin{align}
lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
&text{Now because $sqrt{x^2}$ = $|x|$} \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
text{Recall that } & |x| = begin{cases}
x &text{ if } x geq 0\
- x &text{ if } x < 0\
end{cases}
\ \
&text{$x$ is approaching $-infty$} \ \
&therefore |x| = -x
\ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
&= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
&= -1
end{align}
This is based on @Battani's answer but with a more in-depth explanation
begin{align}
lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
&text{Now because $sqrt{x^2}$ = $|x|$} \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
text{Recall that } & |x| = begin{cases}
x &text{ if } x geq 0\
- x &text{ if } x < 0\
end{cases}
\ \
&text{$x$ is approaching $-infty$} \ \
&therefore |x| = -x
\ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
&= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
&= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
&= -1
end{align}
answered May 1 '16 at 12:14
Perturbative
3,93011449
3,93011449
add a comment |
add a comment |
up vote
0
down vote
This solution is probably flawed, but I will post this anyway.
Note that
$$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
$$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
$$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
$$=lim_{x to -infty} left(x pm (x+1)right)$$
$-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
$$lim_{x to -infty} left(x - (x+1)right)$$
$$=lim_{x to -infty} -1$$
$$=boxed{-1}.$$
add a comment |
up vote
0
down vote
This solution is probably flawed, but I will post this anyway.
Note that
$$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
$$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
$$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
$$=lim_{x to -infty} left(x pm (x+1)right)$$
$-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
$$lim_{x to -infty} left(x - (x+1)right)$$
$$=lim_{x to -infty} -1$$
$$=boxed{-1}.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
This solution is probably flawed, but I will post this anyway.
Note that
$$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
$$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
$$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
$$=lim_{x to -infty} left(x pm (x+1)right)$$
$-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
$$lim_{x to -infty} left(x - (x+1)right)$$
$$=lim_{x to -infty} -1$$
$$=boxed{-1}.$$
This solution is probably flawed, but I will post this anyway.
Note that
$$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
$$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
$$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
$$=lim_{x to -infty} left(x pm (x+1)right)$$
$-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
$$lim_{x to -infty} left(x - (x+1)right)$$
$$=lim_{x to -infty} -1$$
$$=boxed{-1}.$$
answered Nov 23 at 0:57
Jeffrey H.
20810
20810
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1766582%2fevaluate-the-lim-x-to-infty-x-sqrtx2-2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown