Evaluate the $lim_{x to -infty} (x + sqrt{x^2 + 2x})$











up vote
6
down vote

favorite
1












Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$



I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.



This is what I've done so far



begin{align}
lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
&= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
\
end{align}



And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.



Plugging it into WolframAlpha shows that the correct answer is $-1$



Any suggestions on what to do next?










share|cite|improve this question




























    up vote
    6
    down vote

    favorite
    1












    Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$



    I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.



    This is what I've done so far



    begin{align}
    lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
    &= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
    &= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
    \
    end{align}



    And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.



    Plugging it into WolframAlpha shows that the correct answer is $-1$



    Any suggestions on what to do next?










    share|cite|improve this question


























      up vote
      6
      down vote

      favorite
      1









      up vote
      6
      down vote

      favorite
      1






      1





      Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$



      I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.



      This is what I've done so far



      begin{align}
      lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
      &= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
      &= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
      \
      end{align}



      And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.



      Plugging it into WolframAlpha shows that the correct answer is $-1$



      Any suggestions on what to do next?










      share|cite|improve this question















      Evaluate : $$lim_{x to -infty} (x + sqrt{x^2 + 2x})$$



      I've tried some basic algebraic manipulation to get it into a form where I can apply L'Hopital's Rule, but it's still going to be indeterminate form.



      This is what I've done so far



      begin{align}
      lim_{x to -infty} (x + sqrt{x^2 + 2x}) &= lim_{x to -infty} (x + sqrt{x^2 + 2x})left(frac{x-sqrt{x^2 + 2x}}{x-sqrt{x^2 + 2x}}right)\ \
      &= lim_{x to -infty} left(frac{x^2 - (x^2 + 2x)}{x-sqrt{x^2 + 2x}}right)\ \
      &= lim_{x to -infty} left(frac{-2x}{x-sqrt{x^2 + 2x}}right)\
      \
      end{align}



      And that's as far as I've gotten. I've tried applying L'Hopitals Rule, but it still results in an indeterminate form.



      Plugging it into WolframAlpha shows that the correct answer is $-1$



      Any suggestions on what to do next?







      calculus limits radicals limits-without-lhopital






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 4 '16 at 11:05









      Martin Sleziak

      44.6k7115269




      44.6k7115269










      asked May 1 '16 at 10:49









      Perturbative

      3,93011449




      3,93011449






















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          9
          down vote



          accepted










          $$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            HINT:



            Set $-1/x=himplies hto0^+, h>0$



            $x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$



            Now rationalize the numerator to get



            $$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$






            share|cite|improve this answer























            • Why not simply use *Taylor * at order $1$?
              – Bernard
              May 1 '16 at 11:04










            • @Bernard, and this result comes from the basic Limit rule
              – lab bhattacharjee
              May 1 '16 at 11:08










            • @Bernard, Please find the updated version
              – lab bhattacharjee
              May 1 '16 at 11:21










            • It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
              – Bernard
              May 1 '16 at 11:31


















            up vote
            0
            down vote













            This is based on @Battani's answer but with a more in-depth explanation



            begin{align}
            lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
            &text{Now because $sqrt{x^2}$ = $|x|$} \ \
            &= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
            text{Recall that } & |x| = begin{cases}
            x &text{ if } x geq 0\
            - x &text{ if } x < 0\
            end{cases}
            \ \
            &text{$x$ is approaching $-infty$} \ \
            &therefore |x| = -x
            \ \
            &= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
            &= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
            &= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
            &= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
            &= -1
            end{align}






            share|cite|improve this answer




























              up vote
              0
              down vote













              This solution is probably flawed, but I will post this anyway.
              Note that
              $$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
              $$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
              The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
              $$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
              $$=lim_{x to -infty} left(x pm (x+1)right)$$
              $-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
              $$lim_{x to -infty} left(x - (x+1)right)$$
              $$=lim_{x to -infty} -1$$
              $$=boxed{-1}.$$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1766582%2fevaluate-the-lim-x-to-infty-x-sqrtx2-2x%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                9
                down vote



                accepted










                $$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$






                share|cite|improve this answer

























                  up vote
                  9
                  down vote



                  accepted










                  $$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$






                  share|cite|improve this answer























                    up vote
                    9
                    down vote



                    accepted







                    up vote
                    9
                    down vote



                    accepted






                    $$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$






                    share|cite|improve this answer












                    $$lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) =lim _{ xrightarrow -infty }{ left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) =lim _{ xrightarrow -infty }{ frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } = } } \ =lim _{ xrightarrow -infty }{ frac { -2x }{ x+xsqrt { 1+frac { 2 }{ x } } } = } lim _{ xrightarrow -infty }{ frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } = } -1$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered May 1 '16 at 10:54









                    haqnatural

                    20.6k72457




                    20.6k72457






















                        up vote
                        0
                        down vote













                        HINT:



                        Set $-1/x=himplies hto0^+, h>0$



                        $x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$



                        Now rationalize the numerator to get



                        $$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$






                        share|cite|improve this answer























                        • Why not simply use *Taylor * at order $1$?
                          – Bernard
                          May 1 '16 at 11:04










                        • @Bernard, and this result comes from the basic Limit rule
                          – lab bhattacharjee
                          May 1 '16 at 11:08










                        • @Bernard, Please find the updated version
                          – lab bhattacharjee
                          May 1 '16 at 11:21










                        • It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                          – Bernard
                          May 1 '16 at 11:31















                        up vote
                        0
                        down vote













                        HINT:



                        Set $-1/x=himplies hto0^+, h>0$



                        $x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$



                        Now rationalize the numerator to get



                        $$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$






                        share|cite|improve this answer























                        • Why not simply use *Taylor * at order $1$?
                          – Bernard
                          May 1 '16 at 11:04










                        • @Bernard, and this result comes from the basic Limit rule
                          – lab bhattacharjee
                          May 1 '16 at 11:08










                        • @Bernard, Please find the updated version
                          – lab bhattacharjee
                          May 1 '16 at 11:21










                        • It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                          – Bernard
                          May 1 '16 at 11:31













                        up vote
                        0
                        down vote










                        up vote
                        0
                        down vote









                        HINT:



                        Set $-1/x=himplies hto0^+, h>0$



                        $x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$



                        Now rationalize the numerator to get



                        $$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$






                        share|cite|improve this answer














                        HINT:



                        Set $-1/x=himplies hto0^+, h>0$



                        $x^2+2x=dfrac{1-2h}{h^2}impliessqrt{x^2+2x}=+dfrac{sqrt{1-2h}}h$



                        Now rationalize the numerator to get



                        $$dfrac{sqrt{1-2h}-1}h=dfrac{1-2h-1}{h(sqrt{1-2h}+1)}$$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited May 1 '16 at 11:20

























                        answered May 1 '16 at 10:53









                        lab bhattacharjee

                        222k15155273




                        222k15155273












                        • Why not simply use *Taylor * at order $1$?
                          – Bernard
                          May 1 '16 at 11:04










                        • @Bernard, and this result comes from the basic Limit rule
                          – lab bhattacharjee
                          May 1 '16 at 11:08










                        • @Bernard, Please find the updated version
                          – lab bhattacharjee
                          May 1 '16 at 11:21










                        • It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                          – Bernard
                          May 1 '16 at 11:31


















                        • Why not simply use *Taylor * at order $1$?
                          – Bernard
                          May 1 '16 at 11:04










                        • @Bernard, and this result comes from the basic Limit rule
                          – lab bhattacharjee
                          May 1 '16 at 11:08










                        • @Bernard, Please find the updated version
                          – lab bhattacharjee
                          May 1 '16 at 11:21










                        • It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                          – Bernard
                          May 1 '16 at 11:31
















                        Why not simply use *Taylor * at order $1$?
                        – Bernard
                        May 1 '16 at 11:04




                        Why not simply use *Taylor * at order $1$?
                        – Bernard
                        May 1 '16 at 11:04












                        @Bernard, and this result comes from the basic Limit rule
                        – lab bhattacharjee
                        May 1 '16 at 11:08




                        @Bernard, and this result comes from the basic Limit rule
                        – lab bhattacharjee
                        May 1 '16 at 11:08












                        @Bernard, Please find the updated version
                        – lab bhattacharjee
                        May 1 '16 at 11:21




                        @Bernard, Please find the updated version
                        – lab bhattacharjee
                        May 1 '16 at 11:21












                        It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                        – Bernard
                        May 1 '16 at 11:31




                        It's OK, but unnecessarily complicatd: the l.h.s. of the last equality is a rate of variation, hence its limit is the derivative of $sqrt{1+2h}$ at $h=0$.
                        – Bernard
                        May 1 '16 at 11:31










                        up vote
                        0
                        down vote













                        This is based on @Battani's answer but with a more in-depth explanation



                        begin{align}
                        lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
                        &text{Now because $sqrt{x^2}$ = $|x|$} \ \
                        &= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
                        text{Recall that } & |x| = begin{cases}
                        x &text{ if } x geq 0\
                        - x &text{ if } x < 0\
                        end{cases}
                        \ \
                        &text{$x$ is approaching $-infty$} \ \
                        &therefore |x| = -x
                        \ \
                        &= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
                        &= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
                        &= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
                        &= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
                        &= -1
                        end{align}






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          This is based on @Battani's answer but with a more in-depth explanation



                          begin{align}
                          lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
                          &text{Now because $sqrt{x^2}$ = $|x|$} \ \
                          &= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
                          text{Recall that } & |x| = begin{cases}
                          x &text{ if } x geq 0\
                          - x &text{ if } x < 0\
                          end{cases}
                          \ \
                          &text{$x$ is approaching $-infty$} \ \
                          &therefore |x| = -x
                          \ \
                          &= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
                          &= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
                          &= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
                          &= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
                          &= -1
                          end{align}






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            This is based on @Battani's answer but with a more in-depth explanation



                            begin{align}
                            lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
                            &text{Now because $sqrt{x^2}$ = $|x|$} \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
                            text{Recall that } & |x| = begin{cases}
                            x &text{ if } x geq 0\
                            - x &text{ if } x < 0\
                            end{cases}
                            \ \
                            &text{$x$ is approaching $-infty$} \ \
                            &therefore |x| = -x
                            \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
                            &= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
                            &= -1
                            end{align}






                            share|cite|improve this answer












                            This is based on @Battani's answer but with a more in-depth explanation



                            begin{align}
                            lim _{ xto -infty } left( frac { -2x }{ x-sqrt { x^{ 2 }+2x } } right) &= lim _{ xrightarrow -infty }left( frac { -2x }{ x-sqrt { { x }^{ 2 }left( 1+frac { 2 }{ x } right) } } right) \ \
                            &text{Now because $sqrt{x^2}$ = $|x|$} \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x-left| x right| sqrt { 1+frac { 2 }{ x } } } \ \
                            text{Recall that } & |x| = begin{cases}
                            x &text{ if } x geq 0\
                            - x &text{ if } x < 0\
                            end{cases}
                            \ \
                            &text{$x$ is approaching $-infty$} \ \
                            &therefore |x| = -x
                            \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x- (-x)sqrt { 1+frac { 2 }{ x } } } \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ x + xsqrt { 1+frac { 2 }{ x } } } \ \
                            &= lim _{ xrightarrow -infty } frac { -2x }{ xleft( 1+sqrt { 1+frac { 2 }{ x } } right) } \ \
                            &= lim _{ xrightarrow -infty } frac { -2 }{ 1+sqrt { 1+frac { 2 }{ x } } } \\
                            &= -1
                            end{align}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered May 1 '16 at 12:14









                            Perturbative

                            3,93011449




                            3,93011449






















                                up vote
                                0
                                down vote













                                This solution is probably flawed, but I will post this anyway.
                                Note that
                                $$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
                                $$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
                                The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
                                $$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
                                $$=lim_{x to -infty} left(x pm (x+1)right)$$
                                $-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
                                $$lim_{x to -infty} left(x - (x+1)right)$$
                                $$=lim_{x to -infty} -1$$
                                $$=boxed{-1}.$$






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  This solution is probably flawed, but I will post this anyway.
                                  Note that
                                  $$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
                                  $$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
                                  The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
                                  $$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
                                  $$=lim_{x to -infty} left(x pm (x+1)right)$$
                                  $-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
                                  $$lim_{x to -infty} left(x - (x+1)right)$$
                                  $$=lim_{x to -infty} -1$$
                                  $$=boxed{-1}.$$






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    This solution is probably flawed, but I will post this anyway.
                                    Note that
                                    $$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
                                    $$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
                                    The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
                                    $$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
                                    $$=lim_{x to -infty} left(x pm (x+1)right)$$
                                    $-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
                                    $$lim_{x to -infty} left(x - (x+1)right)$$
                                    $$=lim_{x to -infty} -1$$
                                    $$=boxed{-1}.$$






                                    share|cite|improve this answer












                                    This solution is probably flawed, but I will post this anyway.
                                    Note that
                                    $$lim_{x to -infty} left(x + sqrt{x^2 + 2x}right)$$
                                    $$=lim_{x to -infty} left(x + sqrt{(x+1)^2-1}right).$$
                                    The $-1$ in the radical is basically negligible compared to the $(x+1)^2$, so let us ignore that. Doing this gives
                                    $$lim_{x to -infty} left(x + sqrt{(x+1)^2}right)$$
                                    $$=lim_{x to -infty} left(x pm (x+1)right)$$
                                    $-(x+1)$ is positive, while $x+1$ is negative for sufficiently low $x$. Square roots are always nonegative for real $x$, so we should add $-(x+1)$. Doing so gives
                                    $$lim_{x to -infty} left(x - (x+1)right)$$
                                    $$=lim_{x to -infty} -1$$
                                    $$=boxed{-1}.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 23 at 0:57









                                    Jeffrey H.

                                    20810




                                    20810






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1766582%2fevaluate-the-lim-x-to-infty-x-sqrtx2-2x%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Quarter-circle Tiles

                                        build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                                        Mont Emei