closed form for $sum_{ngeq1}pi nlogfrac{4n+1}{4n-1}prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$?












3












$begingroup$


Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.



Here's my proof.



Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?



Update:



Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
    $endgroup$
    – AmbretteOrrisey
    Dec 4 '18 at 22:00
















3












$begingroup$


Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.



Here's my proof.



Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?



Update:



Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
    $endgroup$
    – AmbretteOrrisey
    Dec 4 '18 at 22:00














3












3








3





$begingroup$


Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.



Here's my proof.



Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?



Update:



Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!










share|cite|improve this question











$endgroup$




Look at what I found!
$$int_{-pi/4}^{pi/4}xcsc x mathrm dx=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
I want to know if it is valid, and if there is a nice closed form to go with my series.



Here's my proof.



Recall the famous product representation
$$sin x=xprod_{kgeq1}bigg(1-frac{x^2}{pi^2k^2}bigg)$$
Hence we have that
$$I=int_{-pi/4}^{pi/4}xcsc x mathrm dx=int_{-pi/4}^{pi/4}prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}mathrm dx$$
We may now preform a fraction decomposition, and start with
$$prod_{kgeq1}frac{pi^2k^2}{pi^2k^2-x^2}=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_n$$
Multiplying both sides by $prod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$,
$$1=sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nprod_{kgeq1}frac{pi^2k^2-x^2}{pi^2k^2}$$
$$1=sum_{ngeq1}b_nprod_{kgeq1\kneq n}frac{pi^2k^2-x^2}{pi^2k^2}$$
Which in turn implies that, for any $minBbb N$,
$$1=b_mprod_{kgeq1\kneq m}frac{pi^2k^2-pi^2m^2}{pi^2k^2}$$
$$b_m=prod_{kgeq1\kneq m}frac{k^2}{k^2-m^2}$$
Hence we can begin the process of integration:
$$I=int_{-pi/4}^{pi/4}sum_{ngeq1}frac{pi^2n^2}{pi^2n^2-x^2}b_nmathrm dx$$
$$I=sum_{ngeq1}pi^2n^2b_nint_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}$$
This final integral evaluates to
$$int_{-pi/4}^{pi/4}frac{mathrm dx}{pi^2n^2-x^2}=frac1{pi n}logbigg(frac{4n+1}{4n-1}bigg)$$
So finally we have
$$I=sum_{ngeq1}pi nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
Does this work? Is there a closed form value for $I$? Is there another way to prove this?



Update:



Integrating form $0$ to $pi/2$ instead of $-pi/4$ to $pi/4$ gives, according to Wolfram Alpha,
$$sum_{ngeq1}frac{pi n}2logbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=2G$$
Where $G$ is Catalan's constant. Isn't that cool?! That's crazy cool!







integration closed-form alternative-proof






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 4 '18 at 21:55







clathratus

















asked Dec 4 '18 at 18:34









clathratusclathratus

3,730333




3,730333








  • 1




    $begingroup$
    Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
    $endgroup$
    – AmbretteOrrisey
    Dec 4 '18 at 22:00














  • 1




    $begingroup$
    Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
    $endgroup$
    – AmbretteOrrisey
    Dec 4 '18 at 22:00








1




1




$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00




$begingroup$
Yes it is 'crazy-cool' ... & there are lirerally thousands of crazy-cool results like that! I can't get enough of 'em.
$endgroup$
– AmbretteOrrisey
Dec 4 '18 at 22:00










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025944%2fclosed-form-for-sum-n-geq1-pi-n-log-frac4n14n-1-prod-k-geq1-k-neq-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025944%2fclosed-form-for-sum-n-geq1-pi-n-log-frac4n14n-1-prod-k-geq1-k-neq-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei