$mu$ is $sigma-$finite $iff exists$ function $f in mathcal{L}^{1}(mu)$ with $f(x)>0$ for all $x in X$












5












$begingroup$


Let $(X,mathcal{A}, mu)$ be a measure space. Prove:



$mu$ is $sigma-$finite $iff exists$ function $f in mathcal{L}^{1}(mu)$ with $f(x)>0$ for all $x in X$



My ideas



$"Leftarrow"$



Let $f in mathcal{L}^{1}(mu)$ with $f(x)>0$, $forall x in X$. So, $f$ is measurable. This implies that for a $B_{n}$ defined as $B_{n}:={f>frac{1}{n}}$ which is measurable, so $in mathcal{A}$. By definition, ${f>0}=bigcup_{nin mathbb N}B_{n}in mathcal{A}$,
but since $f > 0, forall x in X$ then $Xsubseteqbigcup_{nin mathbb N}B_{n}$ and $mu(B_{n})<infty, forall n in mathbb N$, since $int_{X}fdmu < infty$$Rightarrow mu$ is $sigma-$finite.



$"Rightarrow"$
I have no idea how to define this function, particularly as $f>0$, $forall x in X$










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    Let $(X,mathcal{A}, mu)$ be a measure space. Prove:



    $mu$ is $sigma-$finite $iff exists$ function $f in mathcal{L}^{1}(mu)$ with $f(x)>0$ for all $x in X$



    My ideas



    $"Leftarrow"$



    Let $f in mathcal{L}^{1}(mu)$ with $f(x)>0$, $forall x in X$. So, $f$ is measurable. This implies that for a $B_{n}$ defined as $B_{n}:={f>frac{1}{n}}$ which is measurable, so $in mathcal{A}$. By definition, ${f>0}=bigcup_{nin mathbb N}B_{n}in mathcal{A}$,
    but since $f > 0, forall x in X$ then $Xsubseteqbigcup_{nin mathbb N}B_{n}$ and $mu(B_{n})<infty, forall n in mathbb N$, since $int_{X}fdmu < infty$$Rightarrow mu$ is $sigma-$finite.



    $"Rightarrow"$
    I have no idea how to define this function, particularly as $f>0$, $forall x in X$










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      1



      $begingroup$


      Let $(X,mathcal{A}, mu)$ be a measure space. Prove:



      $mu$ is $sigma-$finite $iff exists$ function $f in mathcal{L}^{1}(mu)$ with $f(x)>0$ for all $x in X$



      My ideas



      $"Leftarrow"$



      Let $f in mathcal{L}^{1}(mu)$ with $f(x)>0$, $forall x in X$. So, $f$ is measurable. This implies that for a $B_{n}$ defined as $B_{n}:={f>frac{1}{n}}$ which is measurable, so $in mathcal{A}$. By definition, ${f>0}=bigcup_{nin mathbb N}B_{n}in mathcal{A}$,
      but since $f > 0, forall x in X$ then $Xsubseteqbigcup_{nin mathbb N}B_{n}$ and $mu(B_{n})<infty, forall n in mathbb N$, since $int_{X}fdmu < infty$$Rightarrow mu$ is $sigma-$finite.



      $"Rightarrow"$
      I have no idea how to define this function, particularly as $f>0$, $forall x in X$










      share|cite|improve this question











      $endgroup$




      Let $(X,mathcal{A}, mu)$ be a measure space. Prove:



      $mu$ is $sigma-$finite $iff exists$ function $f in mathcal{L}^{1}(mu)$ with $f(x)>0$ for all $x in X$



      My ideas



      $"Leftarrow"$



      Let $f in mathcal{L}^{1}(mu)$ with $f(x)>0$, $forall x in X$. So, $f$ is measurable. This implies that for a $B_{n}$ defined as $B_{n}:={f>frac{1}{n}}$ which is measurable, so $in mathcal{A}$. By definition, ${f>0}=bigcup_{nin mathbb N}B_{n}in mathcal{A}$,
      but since $f > 0, forall x in X$ then $Xsubseteqbigcup_{nin mathbb N}B_{n}$ and $mu(B_{n})<infty, forall n in mathbb N$, since $int_{X}fdmu < infty$$Rightarrow mu$ is $sigma-$finite.



      $"Rightarrow"$
      I have no idea how to define this function, particularly as $f>0$, $forall x in X$







      real-analysis integration measure-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 19:10







      SABOY

















      asked Dec 4 '18 at 19:01









      SABOYSABOY

      615311




      615311






















          1 Answer
          1






          active

          oldest

          votes


















          9












          $begingroup$

          Let $(E_n)_{n in mathbb{N}}$ be measurable (disjoint) sets with $mu(E_n) < infty$ and $Omega = bigcup_{n=1}^infty E_n$. Now define
          $$f(x) := sum_{n=1}^infty frac{1}{2^n} frac{1}{1 + mu(E_n)} 1_{E_n}(x).$$
          By definition, we have $f(x) >0$ for all $x in Omega$. On the other hand, we have
          $$int f(x) d mu(x) le sum_{n=1}^infty 2^{-n} frac{mu(E_n)}{1+mu(E_n)} le 1. $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025971%2fmu-is-sigma-finite-iff-exists-function-f-in-mathcall1-mu-wi%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$

            Let $(E_n)_{n in mathbb{N}}$ be measurable (disjoint) sets with $mu(E_n) < infty$ and $Omega = bigcup_{n=1}^infty E_n$. Now define
            $$f(x) := sum_{n=1}^infty frac{1}{2^n} frac{1}{1 + mu(E_n)} 1_{E_n}(x).$$
            By definition, we have $f(x) >0$ for all $x in Omega$. On the other hand, we have
            $$int f(x) d mu(x) le sum_{n=1}^infty 2^{-n} frac{mu(E_n)}{1+mu(E_n)} le 1. $$






            share|cite|improve this answer









            $endgroup$


















              9












              $begingroup$

              Let $(E_n)_{n in mathbb{N}}$ be measurable (disjoint) sets with $mu(E_n) < infty$ and $Omega = bigcup_{n=1}^infty E_n$. Now define
              $$f(x) := sum_{n=1}^infty frac{1}{2^n} frac{1}{1 + mu(E_n)} 1_{E_n}(x).$$
              By definition, we have $f(x) >0$ for all $x in Omega$. On the other hand, we have
              $$int f(x) d mu(x) le sum_{n=1}^infty 2^{-n} frac{mu(E_n)}{1+mu(E_n)} le 1. $$






              share|cite|improve this answer









              $endgroup$
















                9












                9








                9





                $begingroup$

                Let $(E_n)_{n in mathbb{N}}$ be measurable (disjoint) sets with $mu(E_n) < infty$ and $Omega = bigcup_{n=1}^infty E_n$. Now define
                $$f(x) := sum_{n=1}^infty frac{1}{2^n} frac{1}{1 + mu(E_n)} 1_{E_n}(x).$$
                By definition, we have $f(x) >0$ for all $x in Omega$. On the other hand, we have
                $$int f(x) d mu(x) le sum_{n=1}^infty 2^{-n} frac{mu(E_n)}{1+mu(E_n)} le 1. $$






                share|cite|improve this answer









                $endgroup$



                Let $(E_n)_{n in mathbb{N}}$ be measurable (disjoint) sets with $mu(E_n) < infty$ and $Omega = bigcup_{n=1}^infty E_n$. Now define
                $$f(x) := sum_{n=1}^infty frac{1}{2^n} frac{1}{1 + mu(E_n)} 1_{E_n}(x).$$
                By definition, we have $f(x) >0$ for all $x in Omega$. On the other hand, we have
                $$int f(x) d mu(x) le sum_{n=1}^infty 2^{-n} frac{mu(E_n)}{1+mu(E_n)} le 1. $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 4 '18 at 19:16









                p4schp4sch

                4,995217




                4,995217






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025971%2fmu-is-sigma-finite-iff-exists-function-f-in-mathcall1-mu-wi%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei