$f''(x)leq 0$ implies $f$ concave
$begingroup$
I'm using the following definition:
$f:[0,infty)rightarrow[0,infty)$ is concave if $forall x,yin[0,infty)$ and $sin[0,1]$, we have
$$f(sx+(1-s)y)geq sf(x)+(1-s)f(y) $$
I need to prove that every function $f:[0,infty)rightarrow[0,infty)$ twice differentiable satisfying $f''(x)leq 0$ for all $xin[0,infty)$ is concave.
I found the reciprocal, but not this statement.
Well, I know that $f''(x)leq 0$ implies that for every $x<y$, $f'(y)leq f'(x)$. Can someone give me just some hints?
functions derivatives
$endgroup$
add a comment |
$begingroup$
I'm using the following definition:
$f:[0,infty)rightarrow[0,infty)$ is concave if $forall x,yin[0,infty)$ and $sin[0,1]$, we have
$$f(sx+(1-s)y)geq sf(x)+(1-s)f(y) $$
I need to prove that every function $f:[0,infty)rightarrow[0,infty)$ twice differentiable satisfying $f''(x)leq 0$ for all $xin[0,infty)$ is concave.
I found the reciprocal, but not this statement.
Well, I know that $f''(x)leq 0$ implies that for every $x<y$, $f'(y)leq f'(x)$. Can someone give me just some hints?
functions derivatives
$endgroup$
1
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49
add a comment |
$begingroup$
I'm using the following definition:
$f:[0,infty)rightarrow[0,infty)$ is concave if $forall x,yin[0,infty)$ and $sin[0,1]$, we have
$$f(sx+(1-s)y)geq sf(x)+(1-s)f(y) $$
I need to prove that every function $f:[0,infty)rightarrow[0,infty)$ twice differentiable satisfying $f''(x)leq 0$ for all $xin[0,infty)$ is concave.
I found the reciprocal, but not this statement.
Well, I know that $f''(x)leq 0$ implies that for every $x<y$, $f'(y)leq f'(x)$. Can someone give me just some hints?
functions derivatives
$endgroup$
I'm using the following definition:
$f:[0,infty)rightarrow[0,infty)$ is concave if $forall x,yin[0,infty)$ and $sin[0,1]$, we have
$$f(sx+(1-s)y)geq sf(x)+(1-s)f(y) $$
I need to prove that every function $f:[0,infty)rightarrow[0,infty)$ twice differentiable satisfying $f''(x)leq 0$ for all $xin[0,infty)$ is concave.
I found the reciprocal, but not this statement.
Well, I know that $f''(x)leq 0$ implies that for every $x<y$, $f'(y)leq f'(x)$. Can someone give me just some hints?
functions derivatives
functions derivatives
asked Dec 4 '18 at 17:31
Mateus RochaMateus Rocha
812117
812117
1
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49
add a comment |
1
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49
1
1
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use Rolle's Theorem.
Define $z = sx + (1-s)y$.
$exists z_1 in (x, z), quadtext{s.t.}quad f(z) - f(x) = (z-x)f'(z_1)$
$exists z_2 in (z, y), quadtext{s.t.}quad f(y) - f(z) = (y-z)f'(z_2)$
so
$$
begin{aligned}
sf(x) + (1-s)f(y) = & s[f(z) - (z-x)f'(z_1)] + (1-s)[f(z) + (y-z)f'(z_2)] \
= & s[f(z) - (1-s)(y-x)f'(z_1)] + (1-s)[f(z) + s(y-x)f'(z_2)] \
= & [s+(1-s)]f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]\
= & f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]
end{aligned}
$$
Apparently
$s>0, 1-s>0, y-x>0$ and also $f'(z_2) leq f'(z_1)$ because $f''(x)$ always negative.
So
$[sf(x) + (1-s)f(y)] - f(z) = s(1-s)(y-x)[f'(z_2)-f'(z_1)] leq 0$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025871%2ffx-leq-0-implies-f-concave%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use Rolle's Theorem.
Define $z = sx + (1-s)y$.
$exists z_1 in (x, z), quadtext{s.t.}quad f(z) - f(x) = (z-x)f'(z_1)$
$exists z_2 in (z, y), quadtext{s.t.}quad f(y) - f(z) = (y-z)f'(z_2)$
so
$$
begin{aligned}
sf(x) + (1-s)f(y) = & s[f(z) - (z-x)f'(z_1)] + (1-s)[f(z) + (y-z)f'(z_2)] \
= & s[f(z) - (1-s)(y-x)f'(z_1)] + (1-s)[f(z) + s(y-x)f'(z_2)] \
= & [s+(1-s)]f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]\
= & f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]
end{aligned}
$$
Apparently
$s>0, 1-s>0, y-x>0$ and also $f'(z_2) leq f'(z_1)$ because $f''(x)$ always negative.
So
$[sf(x) + (1-s)f(y)] - f(z) = s(1-s)(y-x)[f'(z_2)-f'(z_1)] leq 0$
$endgroup$
add a comment |
$begingroup$
Use Rolle's Theorem.
Define $z = sx + (1-s)y$.
$exists z_1 in (x, z), quadtext{s.t.}quad f(z) - f(x) = (z-x)f'(z_1)$
$exists z_2 in (z, y), quadtext{s.t.}quad f(y) - f(z) = (y-z)f'(z_2)$
so
$$
begin{aligned}
sf(x) + (1-s)f(y) = & s[f(z) - (z-x)f'(z_1)] + (1-s)[f(z) + (y-z)f'(z_2)] \
= & s[f(z) - (1-s)(y-x)f'(z_1)] + (1-s)[f(z) + s(y-x)f'(z_2)] \
= & [s+(1-s)]f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]\
= & f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]
end{aligned}
$$
Apparently
$s>0, 1-s>0, y-x>0$ and also $f'(z_2) leq f'(z_1)$ because $f''(x)$ always negative.
So
$[sf(x) + (1-s)f(y)] - f(z) = s(1-s)(y-x)[f'(z_2)-f'(z_1)] leq 0$
$endgroup$
add a comment |
$begingroup$
Use Rolle's Theorem.
Define $z = sx + (1-s)y$.
$exists z_1 in (x, z), quadtext{s.t.}quad f(z) - f(x) = (z-x)f'(z_1)$
$exists z_2 in (z, y), quadtext{s.t.}quad f(y) - f(z) = (y-z)f'(z_2)$
so
$$
begin{aligned}
sf(x) + (1-s)f(y) = & s[f(z) - (z-x)f'(z_1)] + (1-s)[f(z) + (y-z)f'(z_2)] \
= & s[f(z) - (1-s)(y-x)f'(z_1)] + (1-s)[f(z) + s(y-x)f'(z_2)] \
= & [s+(1-s)]f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]\
= & f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]
end{aligned}
$$
Apparently
$s>0, 1-s>0, y-x>0$ and also $f'(z_2) leq f'(z_1)$ because $f''(x)$ always negative.
So
$[sf(x) + (1-s)f(y)] - f(z) = s(1-s)(y-x)[f'(z_2)-f'(z_1)] leq 0$
$endgroup$
Use Rolle's Theorem.
Define $z = sx + (1-s)y$.
$exists z_1 in (x, z), quadtext{s.t.}quad f(z) - f(x) = (z-x)f'(z_1)$
$exists z_2 in (z, y), quadtext{s.t.}quad f(y) - f(z) = (y-z)f'(z_2)$
so
$$
begin{aligned}
sf(x) + (1-s)f(y) = & s[f(z) - (z-x)f'(z_1)] + (1-s)[f(z) + (y-z)f'(z_2)] \
= & s[f(z) - (1-s)(y-x)f'(z_1)] + (1-s)[f(z) + s(y-x)f'(z_2)] \
= & [s+(1-s)]f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]\
= & f(z) + s(1-s)(y-x)[f'(z_2) - f'(z_1)]
end{aligned}
$$
Apparently
$s>0, 1-s>0, y-x>0$ and also $f'(z_2) leq f'(z_1)$ because $f''(x)$ always negative.
So
$[sf(x) + (1-s)f(y)] - f(z) = s(1-s)(y-x)[f'(z_2)-f'(z_1)] leq 0$
answered Dec 4 '18 at 17:49
MoonKnightMoonKnight
1,359611
1,359611
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025871%2ffx-leq-0-implies-f-concave%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
See this. The answers use techniques you should use as well.
$endgroup$
– Don Thousand
Dec 4 '18 at 17:49