Statistics: Point estimation
$begingroup$
If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.
How do we calculate $lambda*$ and $d(lambda*)$?
I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.
statistics parameter-estimation
$endgroup$
add a comment |
$begingroup$
If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.
How do we calculate $lambda*$ and $d(lambda*)$?
I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.
statistics parameter-estimation
$endgroup$
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20
add a comment |
$begingroup$
If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.
How do we calculate $lambda*$ and $d(lambda*)$?
I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.
statistics parameter-estimation
$endgroup$
If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.
How do we calculate $lambda*$ and $d(lambda*)$?
I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.
statistics parameter-estimation
statistics parameter-estimation
asked Dec 4 '18 at 17:57
CloneClone
99
99
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20
add a comment |
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.
If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$
So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025901%2fstatistics-point-estimation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.
If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$
So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$
$endgroup$
add a comment |
$begingroup$
Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.
If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$
So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$
$endgroup$
add a comment |
$begingroup$
Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.
If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$
So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$
$endgroup$
Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.
If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$
So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$
answered Dec 4 '18 at 20:44
BruceETBruceET
35.3k71440
35.3k71440
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025901%2fstatistics-point-estimation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04
$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05
$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20