Statistics: Point estimation












-1












$begingroup$


If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.



How do we calculate $lambda*$ and $d(lambda*)$?



I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What is $lambda*$?
    $endgroup$
    – Sean Roberson
    Dec 4 '18 at 18:04










  • $begingroup$
    could you define $lambda*$ and $d(lambda*)$ more specifically?
    $endgroup$
    – MoonKnight
    Dec 4 '18 at 18:05










  • $begingroup$
    $lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
    $endgroup$
    – Clone
    Dec 4 '18 at 18:20
















-1












$begingroup$


If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.



How do we calculate $lambda*$ and $d(lambda*)$?



I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What is $lambda*$?
    $endgroup$
    – Sean Roberson
    Dec 4 '18 at 18:04










  • $begingroup$
    could you define $lambda*$ and $d(lambda*)$ more specifically?
    $endgroup$
    – MoonKnight
    Dec 4 '18 at 18:05










  • $begingroup$
    $lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
    $endgroup$
    – Clone
    Dec 4 '18 at 18:20














-1












-1








-1


1



$begingroup$


If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.



How do we calculate $lambda*$ and $d(lambda*)$?



I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.










share|cite|improve this question









$endgroup$




If we have a sample of $x=2$ from a $Po(6 cdot lambda)$ distribution.



How do we calculate $lambda*$ and $d(lambda*)$?



I think that $lambda* = frac{2}{6} = frac{1}{3} $ but I am not sure about the other one.







statistics parameter-estimation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 4 '18 at 17:57









CloneClone

99




99












  • $begingroup$
    What is $lambda*$?
    $endgroup$
    – Sean Roberson
    Dec 4 '18 at 18:04










  • $begingroup$
    could you define $lambda*$ and $d(lambda*)$ more specifically?
    $endgroup$
    – MoonKnight
    Dec 4 '18 at 18:05










  • $begingroup$
    $lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
    $endgroup$
    – Clone
    Dec 4 '18 at 18:20


















  • $begingroup$
    What is $lambda*$?
    $endgroup$
    – Sean Roberson
    Dec 4 '18 at 18:04










  • $begingroup$
    could you define $lambda*$ and $d(lambda*)$ more specifically?
    $endgroup$
    – MoonKnight
    Dec 4 '18 at 18:05










  • $begingroup$
    $lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
    $endgroup$
    – Clone
    Dec 4 '18 at 18:20
















$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04




$begingroup$
What is $lambda*$?
$endgroup$
– Sean Roberson
Dec 4 '18 at 18:04












$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05




$begingroup$
could you define $lambda*$ and $d(lambda*)$ more specifically?
$endgroup$
– MoonKnight
Dec 4 '18 at 18:05












$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20




$begingroup$
$lambda*$ is the parameter that we estimate and $d(lambda*)$ is the standard deviation.
$endgroup$
– Clone
Dec 4 '18 at 18:20










1 Answer
1






active

oldest

votes


















0












$begingroup$

Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
information may be helpful.



If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$



So $S$ is a point estimate of $12 lambda$ and
$S/12$ is a point estimate of $lambda.$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025901%2fstatistics-point-estimation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
    information may be helpful.



    If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$



    So $S$ is a point estimate of $12 lambda$ and
    $S/12$ is a point estimate of $lambda.$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
      information may be helpful.



      If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$



      So $S$ is a point estimate of $12 lambda$ and
      $S/12$ is a point estimate of $lambda.$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
        information may be helpful.



        If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$



        So $S$ is a point estimate of $12 lambda$ and
        $S/12$ is a point estimate of $lambda.$






        share|cite|improve this answer









        $endgroup$



        Whatever you may mean by $lambda *$ and $d(lambda *),$ which I suppose are defined in your text or notes, the following
        information may be helpful.



        If $X_1$ and $X_2$ are independently $mathsf{Pois}(6lambda),$ Then $$S = X_1 + X_2 sim mathsf{Pois}(12lambda).$$ Then $E(S) = 12lambda$ and $Var(S) = 12lambda.$



        So $S$ is a point estimate of $12 lambda$ and
        $S/12$ is a point estimate of $lambda.$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 4 '18 at 20:44









        BruceETBruceET

        35.3k71440




        35.3k71440






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025901%2fstatistics-point-estimation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei