Steps of a Markov chain subordinated to a Poisson process












2












$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$

  • $D([0,1]):=left{f:[0,1]tomathbb Rmid ftext{ is càdlàg and left-continuous at }1right}$


  • $X^{(n)}$ be a $D([0,1])$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1)$$


  • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$



I've read that first $(n-1)wedge N_{n-}$ steps of $X^{(n)}$ and $Z^{(n)}$ coincide, but appear at different times ($frac kn$ vs the $k$th jump time of $left(N_{nt}right)_{tge0}$). What's exactly meant and how can we prove it rigorously?




I've got a vague intuition what's meant: Assuming that $N$ is right-continuous (in practice, we can always find a right-continuous modification), $N$ is almost surely nondecreasing and makes almost surely jumps of size $1$. So, $tmapsto N_{nt}$ somehow behaves like $tmapstolfloor ntrfloor$, but the time-scale is stretched. How can we formulate this rigorously?



What's confusing me most is that it's written that only the first $(n-1)wedge N_{n-}$ steps coincide. Where does the $N_{n-}=lim_{tto n-}N_t$ come from? Shouldn't the first $n-1$ steps coincide?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$

    • $D([0,1]):=left{f:[0,1]tomathbb Rmid ftext{ is càdlàg and left-continuous at }1right}$


    • $X^{(n)}$ be a $D([0,1])$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1)$$


    • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$



    I've read that first $(n-1)wedge N_{n-}$ steps of $X^{(n)}$ and $Z^{(n)}$ coincide, but appear at different times ($frac kn$ vs the $k$th jump time of $left(N_{nt}right)_{tge0}$). What's exactly meant and how can we prove it rigorously?




    I've got a vague intuition what's meant: Assuming that $N$ is right-continuous (in practice, we can always find a right-continuous modification), $N$ is almost surely nondecreasing and makes almost surely jumps of size $1$. So, $tmapsto N_{nt}$ somehow behaves like $tmapstolfloor ntrfloor$, but the time-scale is stretched. How can we formulate this rigorously?



    What's confusing me most is that it's written that only the first $(n-1)wedge N_{n-}$ steps coincide. Where does the $N_{n-}=lim_{tto n-}N_t$ come from? Shouldn't the first $n-1$ steps coincide?










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$

      • $D([0,1]):=left{f:[0,1]tomathbb Rmid ftext{ is càdlàg and left-continuous at }1right}$


      • $X^{(n)}$ be a $D([0,1])$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1)$$


      • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$



      I've read that first $(n-1)wedge N_{n-}$ steps of $X^{(n)}$ and $Z^{(n)}$ coincide, but appear at different times ($frac kn$ vs the $k$th jump time of $left(N_{nt}right)_{tge0}$). What's exactly meant and how can we prove it rigorously?




      I've got a vague intuition what's meant: Assuming that $N$ is right-continuous (in practice, we can always find a right-continuous modification), $N$ is almost surely nondecreasing and makes almost surely jumps of size $1$. So, $tmapsto N_{nt}$ somehow behaves like $tmapstolfloor ntrfloor$, but the time-scale is stretched. How can we formulate this rigorously?



      What's confusing me most is that it's written that only the first $(n-1)wedge N_{n-}$ steps coincide. Where does the $N_{n-}=lim_{tto n-}N_t$ come from? Shouldn't the first $n-1$ steps coincide?










      share|cite|improve this question











      $endgroup$




      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$

      • $D([0,1]):=left{f:[0,1]tomathbb Rmid ftext{ is càdlàg and left-continuous at }1right}$


      • $X^{(n)}$ be a $D([0,1])$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1)$$


      • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$



      I've read that first $(n-1)wedge N_{n-}$ steps of $X^{(n)}$ and $Z^{(n)}$ coincide, but appear at different times ($frac kn$ vs the $k$th jump time of $left(N_{nt}right)_{tge0}$). What's exactly meant and how can we prove it rigorously?




      I've got a vague intuition what's meant: Assuming that $N$ is right-continuous (in practice, we can always find a right-continuous modification), $N$ is almost surely nondecreasing and makes almost surely jumps of size $1$. So, $tmapsto N_{nt}$ somehow behaves like $tmapstolfloor ntrfloor$, but the time-scale is stretched. How can we formulate this rigorously?



      What's confusing me most is that it's written that only the first $(n-1)wedge N_{n-}$ steps coincide. Where does the $N_{n-}=lim_{tto n-}N_t$ come from? Shouldn't the first $n-1$ steps coincide?







      probability-theory stochastic-processes markov-chains markov-process poisson-process






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 20:14







      0xbadf00d

















      asked Dec 4 '18 at 18:00









      0xbadf00d0xbadf00d

      1,92241430




      1,92241430






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          It's easy to see that $$X^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{n-1}right}$$ and $$Z^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{N_{n-}}right}$$ for all $ninmathbb N$. In order to make these processes coincide, we can apply a random time change $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ with $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ and $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ for $ninmathbb N$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025905%2fsteps-of-a-markov-chain-subordinated-to-a-poisson-process%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            It's easy to see that $$X^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{n-1}right}$$ and $$Z^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{N_{n-}}right}$$ for all $ninmathbb N$. In order to make these processes coincide, we can apply a random time change $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ with $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ and $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ for $ninmathbb N$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              It's easy to see that $$X^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{n-1}right}$$ and $$Z^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{N_{n-}}right}$$ for all $ninmathbb N$. In order to make these processes coincide, we can apply a random time change $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ with $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ and $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ for $ninmathbb N$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                It's easy to see that $$X^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{n-1}right}$$ and $$Z^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{N_{n-}}right}$$ for all $ninmathbb N$. In order to make these processes coincide, we can apply a random time change $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ with $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ and $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ for $ninmathbb N$.






                share|cite|improve this answer









                $endgroup$



                It's easy to see that $$X^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{n-1}right}$$ and $$Z^{(n)}_{[0,:1)}=left{Y^{(n)}_0,ldots,Y^{(n)}_{N_{n-}}right}$$ for all $ninmathbb N$. In order to make these processes coincide, we can apply a random time change $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ with $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ and $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ for $ninmathbb N$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 7 '18 at 20:17









                0xbadf00d0xbadf00d

                1,92241430




                1,92241430






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025905%2fsteps-of-a-markov-chain-subordinated-to-a-poisson-process%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei