Conditional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d. Am I correct?
$begingroup$
Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.
Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$
Am I correct in thinking this?
Thanks!
(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.
asymptotics statistical-inference
$endgroup$
add a comment |
$begingroup$
Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.
Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$
Am I correct in thinking this?
Thanks!
(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.
asymptotics statistical-inference
$endgroup$
1
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59
add a comment |
$begingroup$
Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.
Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$
Am I correct in thinking this?
Thanks!
(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.
asymptotics statistical-inference
$endgroup$
Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.
Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$
Am I correct in thinking this?
Thanks!
(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.
asymptotics statistical-inference
asymptotics statistical-inference
edited Dec 8 '18 at 14:31
Bernard
119k740113
119k740113
asked Dec 8 '18 at 14:14
L200123L200123
855
855
1
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59
add a comment |
1
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59
1
1
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$
Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$
$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031149%2fconditional-expectation-ex-1-mid-overlinex-n-if-x-1-dots-x-n-are-i-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$
Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$
$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$
$endgroup$
add a comment |
$begingroup$
We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$
Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$
$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$
$endgroup$
add a comment |
$begingroup$
We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$
Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$
$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$
$endgroup$
We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$
Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$
$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$
answered Dec 8 '18 at 14:18
Siong Thye GohSiong Thye Goh
101k1466117
101k1466117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031149%2fconditional-expectation-ex-1-mid-overlinex-n-if-x-1-dots-x-n-are-i-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59