Sum of fraction series
$begingroup$
I have been trying to solve this question but I am not sure how to, and would appreciate some help. Thanks.
Simplify:
$$frac{1}{4} +frac{1}{4^2} +frac{4^2}{4^3} +frac{4^2}{4^4} +frac{4^4}{4^5} +frac{4^4}{4^6} +ldots +frac{4^{102}}{4^{103}} +frac{4^{102}}{4^{104}}.$$
fractions
$endgroup$
add a comment |
$begingroup$
I have been trying to solve this question but I am not sure how to, and would appreciate some help. Thanks.
Simplify:
$$frac{1}{4} +frac{1}{4^2} +frac{4^2}{4^3} +frac{4^2}{4^4} +frac{4^4}{4^5} +frac{4^4}{4^6} +ldots +frac{4^{102}}{4^{103}} +frac{4^{102}}{4^{104}}.$$
fractions
$endgroup$
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
4
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23
add a comment |
$begingroup$
I have been trying to solve this question but I am not sure how to, and would appreciate some help. Thanks.
Simplify:
$$frac{1}{4} +frac{1}{4^2} +frac{4^2}{4^3} +frac{4^2}{4^4} +frac{4^4}{4^5} +frac{4^4}{4^6} +ldots +frac{4^{102}}{4^{103}} +frac{4^{102}}{4^{104}}.$$
fractions
$endgroup$
I have been trying to solve this question but I am not sure how to, and would appreciate some help. Thanks.
Simplify:
$$frac{1}{4} +frac{1}{4^2} +frac{4^2}{4^3} +frac{4^2}{4^4} +frac{4^4}{4^5} +frac{4^4}{4^6} +ldots +frac{4^{102}}{4^{103}} +frac{4^{102}}{4^{104}}.$$
fractions
fractions
edited Dec 8 '18 at 14:19
Rócherz
2,7762721
2,7762721
asked Dec 8 '18 at 14:16
UnknownUnknown
73
73
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
4
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23
add a comment |
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
4
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
4
4
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The required sum is $$sum_{r=1}^{52}Bigg(Big(frac{4^{2r-2}}{4^{2r-1}}Big)+Big(frac{4^{2r-2}}{4^{2r}}Big)Bigg)$$
$$=sum_{r=1}^{52}Bigg(Big(frac{1}{4}Big)+Big(frac{1}{4^2}Big)Bigg)$$
$$=52Bigg(frac{1}{4}+frac{1}{4^2}Bigg)$$
$$=13+frac{13}{4}$$
$$=frac{65}{4}$$
Hope it is helpful:)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031151%2fsum-of-fraction-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The required sum is $$sum_{r=1}^{52}Bigg(Big(frac{4^{2r-2}}{4^{2r-1}}Big)+Big(frac{4^{2r-2}}{4^{2r}}Big)Bigg)$$
$$=sum_{r=1}^{52}Bigg(Big(frac{1}{4}Big)+Big(frac{1}{4^2}Big)Bigg)$$
$$=52Bigg(frac{1}{4}+frac{1}{4^2}Bigg)$$
$$=13+frac{13}{4}$$
$$=frac{65}{4}$$
Hope it is helpful:)
$endgroup$
add a comment |
$begingroup$
The required sum is $$sum_{r=1}^{52}Bigg(Big(frac{4^{2r-2}}{4^{2r-1}}Big)+Big(frac{4^{2r-2}}{4^{2r}}Big)Bigg)$$
$$=sum_{r=1}^{52}Bigg(Big(frac{1}{4}Big)+Big(frac{1}{4^2}Big)Bigg)$$
$$=52Bigg(frac{1}{4}+frac{1}{4^2}Bigg)$$
$$=13+frac{13}{4}$$
$$=frac{65}{4}$$
Hope it is helpful:)
$endgroup$
add a comment |
$begingroup$
The required sum is $$sum_{r=1}^{52}Bigg(Big(frac{4^{2r-2}}{4^{2r-1}}Big)+Big(frac{4^{2r-2}}{4^{2r}}Big)Bigg)$$
$$=sum_{r=1}^{52}Bigg(Big(frac{1}{4}Big)+Big(frac{1}{4^2}Big)Bigg)$$
$$=52Bigg(frac{1}{4}+frac{1}{4^2}Bigg)$$
$$=13+frac{13}{4}$$
$$=frac{65}{4}$$
Hope it is helpful:)
$endgroup$
The required sum is $$sum_{r=1}^{52}Bigg(Big(frac{4^{2r-2}}{4^{2r-1}}Big)+Big(frac{4^{2r-2}}{4^{2r}}Big)Bigg)$$
$$=sum_{r=1}^{52}Bigg(Big(frac{1}{4}Big)+Big(frac{1}{4^2}Big)Bigg)$$
$$=52Bigg(frac{1}{4}+frac{1}{4^2}Bigg)$$
$$=13+frac{13}{4}$$
$$=frac{65}{4}$$
Hope it is helpful:)
answered Dec 8 '18 at 14:53
MartundMartund
1,593212
1,593212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031151%2fsum-of-fraction-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Jimmy: what are the first two terms, and the next two and so on? Can you sum a geometric series?
$endgroup$
– J.G.
Dec 8 '18 at 14:21
4
$begingroup$
You're just repeatedly adding $frac{1}{4}$ and $frac{1}{16}$...
$endgroup$
– KM101
Dec 8 '18 at 14:23