Solve the limit $lim_{xto2}({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2})}$
$begingroup$
$$lim_{xto2}left(frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}right)$$
What I tried: Got the fraction to the same denominator
$$begin{align}
lim_{xto2}{frac{x^2-3x+2-x(x-2)^2}{x(x-2)^2(x^2-3x+2)}}&=lim_{xto2}{frac{(x-2)(x-1)-x(x-2)^2}{x(x-2)^2(x-2)(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{-x^2+3x-1}{x(x-2)^2(x-1)}}\
&={frac{-4+6-1}{0}}
end{align}$$
There is a mistake that I can't find...
calculus limits
$endgroup$
add a comment |
$begingroup$
$$lim_{xto2}left(frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}right)$$
What I tried: Got the fraction to the same denominator
$$begin{align}
lim_{xto2}{frac{x^2-3x+2-x(x-2)^2}{x(x-2)^2(x^2-3x+2)}}&=lim_{xto2}{frac{(x-2)(x-1)-x(x-2)^2}{x(x-2)^2(x-2)(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{-x^2+3x-1}{x(x-2)^2(x-1)}}\
&={frac{-4+6-1}{0}}
end{align}$$
There is a mistake that I can't find...
calculus limits
$endgroup$
add a comment |
$begingroup$
$$lim_{xto2}left(frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}right)$$
What I tried: Got the fraction to the same denominator
$$begin{align}
lim_{xto2}{frac{x^2-3x+2-x(x-2)^2}{x(x-2)^2(x^2-3x+2)}}&=lim_{xto2}{frac{(x-2)(x-1)-x(x-2)^2}{x(x-2)^2(x-2)(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{-x^2+3x-1}{x(x-2)^2(x-1)}}\
&={frac{-4+6-1}{0}}
end{align}$$
There is a mistake that I can't find...
calculus limits
$endgroup$
$$lim_{xto2}left(frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}right)$$
What I tried: Got the fraction to the same denominator
$$begin{align}
lim_{xto2}{frac{x^2-3x+2-x(x-2)^2}{x(x-2)^2(x^2-3x+2)}}&=lim_{xto2}{frac{(x-2)(x-1)-x(x-2)^2}{x(x-2)^2(x-2)(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{x-1-x^2+2x}{x(x-2)^2(x-1)}}\
&=lim_{xto2}{frac{-x^2+3x-1}{x(x-2)^2(x-1)}}\
&={frac{-4+6-1}{0}}
end{align}$$
There is a mistake that I can't find...
calculus limits
calculus limits
edited Dec 8 '18 at 14:50
mrtaurho
4,23421234
4,23421234
asked Dec 8 '18 at 14:33
Bili DebiliBili Debili
1428
1428
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The numerator tend to a positive number, the denominator goes to $0$ from the positive directione. The sequence actually goes to infinity.
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$x^2-3x+2-x(x-2)^2=-(x-2)(x^2-3x+1)$$ and $$x^2-3x+2=(x-1)(x-2)$$
$endgroup$
add a comment |
$begingroup$
By $y=x-2 to 0$ we have that
$$lim_{xto 2} left({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}}right)=lim_{yto 0} left({frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}right)$$
and
$${frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}={frac{y+1-y^2-2y}{y^2(y+1)(y+2)}}=frac1ycdot{frac{-y^2-y+1}{(y+1)(y+2)}}to infty$$
$endgroup$
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031174%2fsolve-the-limit-lim-x-to2-frac1xx-22-frac1x2-3x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The numerator tend to a positive number, the denominator goes to $0$ from the positive directione. The sequence actually goes to infinity.
$endgroup$
add a comment |
$begingroup$
The numerator tend to a positive number, the denominator goes to $0$ from the positive directione. The sequence actually goes to infinity.
$endgroup$
add a comment |
$begingroup$
The numerator tend to a positive number, the denominator goes to $0$ from the positive directione. The sequence actually goes to infinity.
$endgroup$
The numerator tend to a positive number, the denominator goes to $0$ from the positive directione. The sequence actually goes to infinity.
answered Dec 8 '18 at 14:40
Siong Thye GohSiong Thye Goh
101k1466117
101k1466117
add a comment |
add a comment |
$begingroup$
Hint: Use that $$x^2-3x+2-x(x-2)^2=-(x-2)(x^2-3x+1)$$ and $$x^2-3x+2=(x-1)(x-2)$$
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$x^2-3x+2-x(x-2)^2=-(x-2)(x^2-3x+1)$$ and $$x^2-3x+2=(x-1)(x-2)$$
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$x^2-3x+2-x(x-2)^2=-(x-2)(x^2-3x+1)$$ and $$x^2-3x+2=(x-1)(x-2)$$
$endgroup$
Hint: Use that $$x^2-3x+2-x(x-2)^2=-(x-2)(x^2-3x+1)$$ and $$x^2-3x+2=(x-1)(x-2)$$
answered Dec 8 '18 at 14:39
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
74.6k42865
74.6k42865
add a comment |
add a comment |
$begingroup$
By $y=x-2 to 0$ we have that
$$lim_{xto 2} left({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}}right)=lim_{yto 0} left({frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}right)$$
and
$${frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}={frac{y+1-y^2-2y}{y^2(y+1)(y+2)}}=frac1ycdot{frac{-y^2-y+1}{(y+1)(y+2)}}to infty$$
$endgroup$
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
add a comment |
$begingroup$
By $y=x-2 to 0$ we have that
$$lim_{xto 2} left({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}}right)=lim_{yto 0} left({frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}right)$$
and
$${frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}={frac{y+1-y^2-2y}{y^2(y+1)(y+2)}}=frac1ycdot{frac{-y^2-y+1}{(y+1)(y+2)}}to infty$$
$endgroup$
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
add a comment |
$begingroup$
By $y=x-2 to 0$ we have that
$$lim_{xto 2} left({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}}right)=lim_{yto 0} left({frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}right)$$
and
$${frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}={frac{y+1-y^2-2y}{y^2(y+1)(y+2)}}=frac1ycdot{frac{-y^2-y+1}{(y+1)(y+2)}}to infty$$
$endgroup$
By $y=x-2 to 0$ we have that
$$lim_{xto 2} left({frac{1}{x(x-2)^2}-frac{1}{x^2-3x+2}}right)=lim_{yto 0} left({frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}right)$$
and
$${frac{1}{y^2(y+2)}-frac{1}{y(y+1)}}={frac{y+1-y^2-2y}{y^2(y+1)(y+2)}}=frac1ycdot{frac{-y^2-y+1}{(y+1)(y+2)}}to infty$$
edited Dec 8 '18 at 18:59
answered Dec 8 '18 at 14:41
gimusigimusi
92.8k84494
92.8k84494
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
add a comment |
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
$begingroup$
@user376343 mmmmhhhhh yes I thing there is something wrong with that! I fix...thanks
$endgroup$
– gimusi
Dec 8 '18 at 18:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031174%2fsolve-the-limit-lim-x-to2-frac1xx-22-frac1x2-3x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown