Help check my derivation of multivariable functions extremum criterion












0












$begingroup$


I'm trying myself to derive the criterion of extremum of several variables.
Let $f:Bbb R^2toBbb R$, $c=(x_0,y_0)inBbb R^2,~u=(a,b)inBbb R^2$ be a unit vector. Define $r(t)=(x_0+at,y_0+bt)$. Then $(fcirc r)''(0)=[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$. So if $f_{xx}(c)$ and the determinant of the Hessian matrix are both positive, then $[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$ is always positive, hence $c$ is a relative minimum. Am I all correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Looks correct to me.
    $endgroup$
    – jgon
    Dec 8 '18 at 15:16
















0












$begingroup$


I'm trying myself to derive the criterion of extremum of several variables.
Let $f:Bbb R^2toBbb R$, $c=(x_0,y_0)inBbb R^2,~u=(a,b)inBbb R^2$ be a unit vector. Define $r(t)=(x_0+at,y_0+bt)$. Then $(fcirc r)''(0)=[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$. So if $f_{xx}(c)$ and the determinant of the Hessian matrix are both positive, then $[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$ is always positive, hence $c$ is a relative minimum. Am I all correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Looks correct to me.
    $endgroup$
    – jgon
    Dec 8 '18 at 15:16














0












0








0





$begingroup$


I'm trying myself to derive the criterion of extremum of several variables.
Let $f:Bbb R^2toBbb R$, $c=(x_0,y_0)inBbb R^2,~u=(a,b)inBbb R^2$ be a unit vector. Define $r(t)=(x_0+at,y_0+bt)$. Then $(fcirc r)''(0)=[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$. So if $f_{xx}(c)$ and the determinant of the Hessian matrix are both positive, then $[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$ is always positive, hence $c$ is a relative minimum. Am I all correct?










share|cite|improve this question











$endgroup$




I'm trying myself to derive the criterion of extremum of several variables.
Let $f:Bbb R^2toBbb R$, $c=(x_0,y_0)inBbb R^2,~u=(a,b)inBbb R^2$ be a unit vector. Define $r(t)=(x_0+at,y_0+bt)$. Then $(fcirc r)''(0)=[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$. So if $f_{xx}(c)$ and the determinant of the Hessian matrix are both positive, then $[a~~b]begin{bmatrix}f_{xx}(c)&f_{xy}(c)\f_{yx}(c)&f_{yy}(c)end{bmatrix}begin{bmatrix}a\bend{bmatrix}$ is always positive, hence $c$ is a relative minimum. Am I all correct?







real-analysis calculus extreme-value-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 15:10







Shara

















asked Dec 8 '18 at 14:43









SharaShara

725




725












  • $begingroup$
    Looks correct to me.
    $endgroup$
    – jgon
    Dec 8 '18 at 15:16


















  • $begingroup$
    Looks correct to me.
    $endgroup$
    – jgon
    Dec 8 '18 at 15:16
















$begingroup$
Looks correct to me.
$endgroup$
– jgon
Dec 8 '18 at 15:16




$begingroup$
Looks correct to me.
$endgroup$
– jgon
Dec 8 '18 at 15:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031188%2fhelp-check-my-derivation-of-multivariable-functions-extremum-criterion%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031188%2fhelp-check-my-derivation-of-multivariable-functions-extremum-criterion%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei