Examples of PIDs that are not Fields
$begingroup$
If $R=mathbb{Z}[frac{1}{2}(1+sqrt{-19})]$ is an example of a PID which is not a Euclidean domain. But since Euclidean domains may not necessarily be fields, this doesn't say much unless $R$ in this case or in other cases is a field. Is $R$ a field? What are ways to check if a PID is a field?
What are some examples of PIDs that are not fields?
abstract-algebra ring-theory field-theory principal-ideal-domains
$endgroup$
add a comment |
$begingroup$
If $R=mathbb{Z}[frac{1}{2}(1+sqrt{-19})]$ is an example of a PID which is not a Euclidean domain. But since Euclidean domains may not necessarily be fields, this doesn't say much unless $R$ in this case or in other cases is a field. Is $R$ a field? What are ways to check if a PID is a field?
What are some examples of PIDs that are not fields?
abstract-algebra ring-theory field-theory principal-ideal-domains
$endgroup$
2
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
2
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38
add a comment |
$begingroup$
If $R=mathbb{Z}[frac{1}{2}(1+sqrt{-19})]$ is an example of a PID which is not a Euclidean domain. But since Euclidean domains may not necessarily be fields, this doesn't say much unless $R$ in this case or in other cases is a field. Is $R$ a field? What are ways to check if a PID is a field?
What are some examples of PIDs that are not fields?
abstract-algebra ring-theory field-theory principal-ideal-domains
$endgroup$
If $R=mathbb{Z}[frac{1}{2}(1+sqrt{-19})]$ is an example of a PID which is not a Euclidean domain. But since Euclidean domains may not necessarily be fields, this doesn't say much unless $R$ in this case or in other cases is a field. Is $R$ a field? What are ways to check if a PID is a field?
What are some examples of PIDs that are not fields?
abstract-algebra ring-theory field-theory principal-ideal-domains
abstract-algebra ring-theory field-theory principal-ideal-domains
asked Dec 12 '18 at 20:57
Tomás PalamásTomás Palamás
363211
363211
2
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
2
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38
add a comment |
2
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
2
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38
2
2
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
2
2
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037208%2fexamples-of-pids-that-are-not-fields%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037208%2fexamples-of-pids-that-are-not-fields%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Example: $Bbb Z$ is a PID, but not a field.
$endgroup$
– cansomeonehelpmeout
Dec 12 '18 at 21:01
$begingroup$
Many, many, yea, infinitely many. $k[t]$ for an indeterminate $t$ and $k$ a field. $k[[t]]$. $Bbb Z$. $Bbb Z[1/n]$ for any nonzero integer $n$.
$endgroup$
– Lubin
Dec 12 '18 at 21:04
2
$begingroup$
DaRT search for nonfield PIDs.
$endgroup$
– rschwieb
Dec 12 '18 at 21:22
$begingroup$
@rschwieb wow great resource. Thanks!
$endgroup$
– Tomás Palamás
Dec 12 '18 at 21:38