Fourier series using Bessel function
$begingroup$
so Im stuck on the following problem;
Use the identity
$exp(ixsintheta) = sumlimits_{k=-infty}^infty J_k(x)exp(iktheta)$
to find the Fourier series of $cos(theta + 4sintheta)$, where $J_k$ is the $k$th Bessel functions.
I tried to expand $cos(theta + 4sintheta)$ using trig identities and use it to find $A_n$ and $B_n$ the usual way for Fourier series, but this lead to an ugly integral that maple cant even solve. Where does the identity fit in? Even anyone has any hints to start it would be greatly appreciated!
Update: continue using Mhenni's hint
Try to compute $A_n$:
$cos(theta+4sin t) = (1/2)(exp(i(t+4sin t))+exp(-i(t+4sin t) $
$= (1/2)(e^{it}sum J_k(4)e^{ikt} + e^{-it}sum J_k(-4)e^{ikt})$
$A_n = (1/2pi)intlimits_{-pi}^{pi}sum(J_k(4)e^{it+ikt}+J_k(-4)e^{-it+ikt})cos(mt)dt$
is this looking any better? or have I gone wrong anywhere? as when I integrate this using maple it looks pretty bad too.
fourier-series bessel-functions
$endgroup$
add a comment |
$begingroup$
so Im stuck on the following problem;
Use the identity
$exp(ixsintheta) = sumlimits_{k=-infty}^infty J_k(x)exp(iktheta)$
to find the Fourier series of $cos(theta + 4sintheta)$, where $J_k$ is the $k$th Bessel functions.
I tried to expand $cos(theta + 4sintheta)$ using trig identities and use it to find $A_n$ and $B_n$ the usual way for Fourier series, but this lead to an ugly integral that maple cant even solve. Where does the identity fit in? Even anyone has any hints to start it would be greatly appreciated!
Update: continue using Mhenni's hint
Try to compute $A_n$:
$cos(theta+4sin t) = (1/2)(exp(i(t+4sin t))+exp(-i(t+4sin t) $
$= (1/2)(e^{it}sum J_k(4)e^{ikt} + e^{-it}sum J_k(-4)e^{ikt})$
$A_n = (1/2pi)intlimits_{-pi}^{pi}sum(J_k(4)e^{it+ikt}+J_k(-4)e^{-it+ikt})cos(mt)dt$
is this looking any better? or have I gone wrong anywhere? as when I integrate this using maple it looks pretty bad too.
fourier-series bessel-functions
$endgroup$
1
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57
add a comment |
$begingroup$
so Im stuck on the following problem;
Use the identity
$exp(ixsintheta) = sumlimits_{k=-infty}^infty J_k(x)exp(iktheta)$
to find the Fourier series of $cos(theta + 4sintheta)$, where $J_k$ is the $k$th Bessel functions.
I tried to expand $cos(theta + 4sintheta)$ using trig identities and use it to find $A_n$ and $B_n$ the usual way for Fourier series, but this lead to an ugly integral that maple cant even solve. Where does the identity fit in? Even anyone has any hints to start it would be greatly appreciated!
Update: continue using Mhenni's hint
Try to compute $A_n$:
$cos(theta+4sin t) = (1/2)(exp(i(t+4sin t))+exp(-i(t+4sin t) $
$= (1/2)(e^{it}sum J_k(4)e^{ikt} + e^{-it}sum J_k(-4)e^{ikt})$
$A_n = (1/2pi)intlimits_{-pi}^{pi}sum(J_k(4)e^{it+ikt}+J_k(-4)e^{-it+ikt})cos(mt)dt$
is this looking any better? or have I gone wrong anywhere? as when I integrate this using maple it looks pretty bad too.
fourier-series bessel-functions
$endgroup$
so Im stuck on the following problem;
Use the identity
$exp(ixsintheta) = sumlimits_{k=-infty}^infty J_k(x)exp(iktheta)$
to find the Fourier series of $cos(theta + 4sintheta)$, where $J_k$ is the $k$th Bessel functions.
I tried to expand $cos(theta + 4sintheta)$ using trig identities and use it to find $A_n$ and $B_n$ the usual way for Fourier series, but this lead to an ugly integral that maple cant even solve. Where does the identity fit in? Even anyone has any hints to start it would be greatly appreciated!
Update: continue using Mhenni's hint
Try to compute $A_n$:
$cos(theta+4sin t) = (1/2)(exp(i(t+4sin t))+exp(-i(t+4sin t) $
$= (1/2)(e^{it}sum J_k(4)e^{ikt} + e^{-it}sum J_k(-4)e^{ikt})$
$A_n = (1/2pi)intlimits_{-pi}^{pi}sum(J_k(4)e^{it+ikt}+J_k(-4)e^{-it+ikt})cos(mt)dt$
is this looking any better? or have I gone wrong anywhere? as when I integrate this using maple it looks pretty bad too.
fourier-series bessel-functions
fourier-series bessel-functions
edited Jan 29 '15 at 2:39
Mr Man
asked Jan 28 '15 at 23:45
Mr ManMr Man
404
404
1
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57
add a comment |
1
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57
1
1
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1124260%2ffourier-series-using-bessel-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1124260%2ffourier-series-using-bessel-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Use the identity $cos t=(e^{it} + e^{-it}) /2$.
$endgroup$
– Mhenni Benghorbal
Jan 28 '15 at 23:57