Is the differentiation operator an open mapping?












3












$begingroup$


Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
begin{align*}
displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
end{align*}

and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
begin{align*}
displaystyle Tf=f'.
end{align*}

Is $T$ defined this way an open mapping? If it's, how to prove it?










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
    begin{align*}
    displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
    end{align*}

    and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
    begin{align*}
    displaystyle Tf=f'.
    end{align*}

    Is $T$ defined this way an open mapping? If it's, how to prove it?










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
      begin{align*}
      displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
      end{align*}

      and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
      begin{align*}
      displaystyle Tf=f'.
      end{align*}

      Is $T$ defined this way an open mapping? If it's, how to prove it?










      share|cite|improve this question











      $endgroup$




      Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
      begin{align*}
      displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
      end{align*}

      and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
      begin{align*}
      displaystyle Tf=f'.
      end{align*}

      Is $T$ defined this way an open mapping? If it's, how to prove it?







      functional-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 12 '18 at 18:53









      davyjones

      393213




      393213










      asked Nov 18 '12 at 18:43









      PtFPtF

      3,95921734




      3,95921734






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
          $$
          Vert fVert_infty
          =max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
          leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
          leqint_{0}^1|g(tau)|dtau
          leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
          $$
          Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.



          Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.



          Here is a characterization of open maps I used in my answer.



          Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.



          1) $T$ is an open mapping



          2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.



          Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
          $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          $2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.



          $3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I agree, your proof is all right =D Thanks a lot @Norbert
            $endgroup$
            – PtF
            Nov 18 '12 at 19:03










          • $begingroup$
            Why does this proof that the map is open?
            $endgroup$
            – Davide Giraudo
            Nov 18 '12 at 19:04










          • $begingroup$
            Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:07










          • $begingroup$
            Dion this is wrong consider zero operator
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:08






          • 1




            $begingroup$
            One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
            $endgroup$
            – Jochen
            Nov 19 '12 at 11:25













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f240023%2fis-the-differentiation-operator-an-open-mapping%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
          $$
          Vert fVert_infty
          =max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
          leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
          leqint_{0}^1|g(tau)|dtau
          leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
          $$
          Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.



          Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.



          Here is a characterization of open maps I used in my answer.



          Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.



          1) $T$ is an open mapping



          2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.



          Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
          $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          $2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.



          $3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I agree, your proof is all right =D Thanks a lot @Norbert
            $endgroup$
            – PtF
            Nov 18 '12 at 19:03










          • $begingroup$
            Why does this proof that the map is open?
            $endgroup$
            – Davide Giraudo
            Nov 18 '12 at 19:04










          • $begingroup$
            Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:07










          • $begingroup$
            Dion this is wrong consider zero operator
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:08






          • 1




            $begingroup$
            One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
            $endgroup$
            – Jochen
            Nov 19 '12 at 11:25


















          3












          $begingroup$

          Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
          $$
          Vert fVert_infty
          =max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
          leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
          leqint_{0}^1|g(tau)|dtau
          leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
          $$
          Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.



          Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.



          Here is a characterization of open maps I used in my answer.



          Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.



          1) $T$ is an open mapping



          2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.



          Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
          $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          $2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.



          $3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I agree, your proof is all right =D Thanks a lot @Norbert
            $endgroup$
            – PtF
            Nov 18 '12 at 19:03










          • $begingroup$
            Why does this proof that the map is open?
            $endgroup$
            – Davide Giraudo
            Nov 18 '12 at 19:04










          • $begingroup$
            Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:07










          • $begingroup$
            Dion this is wrong consider zero operator
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:08






          • 1




            $begingroup$
            One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
            $endgroup$
            – Jochen
            Nov 19 '12 at 11:25
















          3












          3








          3





          $begingroup$

          Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
          $$
          Vert fVert_infty
          =max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
          leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
          leqint_{0}^1|g(tau)|dtau
          leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
          $$
          Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.



          Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.



          Here is a characterization of open maps I used in my answer.



          Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.



          1) $T$ is an open mapping



          2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.



          Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
          $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          $2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.



          $3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.






          share|cite|improve this answer











          $endgroup$



          Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
          $$
          Vert fVert_infty
          =max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
          leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
          leqint_{0}^1|g(tau)|dtau
          leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
          $$
          Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.



          Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.



          Here is a characterization of open maps I used in my answer.



          Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.



          1) $T$ is an open mapping



          2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.



          Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
          $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$



          $2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.



          $3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 19 '12 at 15:00

























          answered Nov 18 '12 at 18:53









          NorbertNorbert

          45.8k774161




          45.8k774161












          • $begingroup$
            I agree, your proof is all right =D Thanks a lot @Norbert
            $endgroup$
            – PtF
            Nov 18 '12 at 19:03










          • $begingroup$
            Why does this proof that the map is open?
            $endgroup$
            – Davide Giraudo
            Nov 18 '12 at 19:04










          • $begingroup$
            Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:07










          • $begingroup$
            Dion this is wrong consider zero operator
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:08






          • 1




            $begingroup$
            One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
            $endgroup$
            – Jochen
            Nov 19 '12 at 11:25




















          • $begingroup$
            I agree, your proof is all right =D Thanks a lot @Norbert
            $endgroup$
            – PtF
            Nov 18 '12 at 19:03










          • $begingroup$
            Why does this proof that the map is open?
            $endgroup$
            – Davide Giraudo
            Nov 18 '12 at 19:04










          • $begingroup$
            Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:07










          • $begingroup$
            Dion this is wrong consider zero operator
            $endgroup$
            – Norbert
            Nov 18 '12 at 19:08






          • 1




            $begingroup$
            One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
            $endgroup$
            – Jochen
            Nov 19 '12 at 11:25


















          $begingroup$
          I agree, your proof is all right =D Thanks a lot @Norbert
          $endgroup$
          – PtF
          Nov 18 '12 at 19:03




          $begingroup$
          I agree, your proof is all right =D Thanks a lot @Norbert
          $endgroup$
          – PtF
          Nov 18 '12 at 19:03












          $begingroup$
          Why does this proof that the map is open?
          $endgroup$
          – Davide Giraudo
          Nov 18 '12 at 19:04




          $begingroup$
          Why does this proof that the map is open?
          $endgroup$
          – Davide Giraudo
          Nov 18 '12 at 19:04












          $begingroup$
          Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
          $endgroup$
          – Norbert
          Nov 18 '12 at 19:07




          $begingroup$
          Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
          $endgroup$
          – Norbert
          Nov 18 '12 at 19:07












          $begingroup$
          Dion this is wrong consider zero operator
          $endgroup$
          – Norbert
          Nov 18 '12 at 19:08




          $begingroup$
          Dion this is wrong consider zero operator
          $endgroup$
          – Norbert
          Nov 18 '12 at 19:08




          1




          1




          $begingroup$
          One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
          $endgroup$
          – Jochen
          Nov 19 '12 at 11:25






          $begingroup$
          One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
          $endgroup$
          – Jochen
          Nov 19 '12 at 11:25




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f240023%2fis-the-differentiation-operator-an-open-mapping%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei