Is the differentiation operator an open mapping?
$begingroup$
Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
begin{align*}
displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
end{align*}
and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
begin{align*}
displaystyle Tf=f'.
end{align*}
Is $T$ defined this way an open mapping? If it's, how to prove it?
functional-analysis
$endgroup$
add a comment |
$begingroup$
Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
begin{align*}
displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
end{align*}
and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
begin{align*}
displaystyle Tf=f'.
end{align*}
Is $T$ defined this way an open mapping? If it's, how to prove it?
functional-analysis
$endgroup$
add a comment |
$begingroup$
Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
begin{align*}
displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
end{align*}
and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
begin{align*}
displaystyle Tf=f'.
end{align*}
Is $T$ defined this way an open mapping? If it's, how to prove it?
functional-analysis
$endgroup$
Consider the vector spaces $C([0, 1])$ and $C^1([0, 1])$ with norm,
begin{align*}
displaystyle |f|_infty=sup_{xin [0, 1]}|f(x)|,
end{align*}
and let $T:C^1([0, 1])to C([0, 1])$ the operator given by,
begin{align*}
displaystyle Tf=f'.
end{align*}
Is $T$ defined this way an open mapping? If it's, how to prove it?
functional-analysis
functional-analysis
edited Dec 12 '18 at 18:53
davyjones
393213
393213
asked Nov 18 '12 at 18:43
PtFPtF
3,95921734
3,95921734
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
$$
Vert fVert_infty
=max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
leqint_{0}^1|g(tau)|dtau
leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
$$
Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.
Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.
Here is a characterization of open maps I used in my answer.
Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.
1) $T$ is an open mapping
2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.
Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
$mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
$2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.
$3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.
$endgroup$
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
|
show 8 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f240023%2fis-the-differentiation-operator-an-open-mapping%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
$$
Vert fVert_infty
=max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
leqint_{0}^1|g(tau)|dtau
leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
$$
Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.
Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.
Here is a characterization of open maps I used in my answer.
Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.
1) $T$ is an open mapping
2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.
Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
$mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
$2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.
$3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.
$endgroup$
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
|
show 8 more comments
$begingroup$
Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
$$
Vert fVert_infty
=max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
leqint_{0}^1|g(tau)|dtau
leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
$$
Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.
Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.
Here is a characterization of open maps I used in my answer.
Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.
1) $T$ is an open mapping
2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.
Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
$mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
$2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.
$3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.
$endgroup$
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
|
show 8 more comments
$begingroup$
Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
$$
Vert fVert_infty
=max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
leqint_{0}^1|g(tau)|dtau
leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
$$
Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.
Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.
Here is a characterization of open maps I used in my answer.
Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.
1) $T$ is an open mapping
2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.
Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
$mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
$2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.
$3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.
$endgroup$
Yes it is. Take arbitrary $gin C([0,1])$ and consuder $f(t)=int_{0}^tg(tau)dtau$. Then $T(f)=g$ and
$$
Vert fVert_infty
=max_{tin[0,1]}left|int_{0}^tg(tau)dtauright|
leqmax_{tin[0,1]}int_{0}^t|g(tau)|dtau
leqint_{0}^1|g(tau)|dtau
leqint_{0}^1max_{tauin[0,1]}|g(tau)|dtau=Vert gVert_infty
$$
Thus there exist $C=1$ such that for each $gin C([0,1])$ there exist $fin C^1([0,1])$ with $T(f)=g$ and $Vert fVertleq CVert gVert$. Hence $T$ is an open mapping.
Though $T$ is surjective we can not apply open mapping theorem to conclude that $T$ is open mapping, because $(C^1([0,1]),VertcdotVert_infty)$ is not a Banach space.
Here is a characterization of open maps I used in my answer.
Theorem. Let $E$, $F$ be normed spaces and $Tinmathcal{B}(E,F)$, then the following conditions are equivalent.
1) $T$ is an open mapping
2) there exist $r>0$ such that $mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
3) there exist $C>0$ such that for all $yin F$ there exist $xin E$ with $T(x)=y$ and $Vert xVertleq CVert yVert$.
Proof. $1)implies 2)$ Let condition $(1)$ holds, then $T(mathrm{Ball}_E(0,1))$ is open. Obviously $0in T(mathrm{Ball}_E(0,1))$, so from previous we have $r>0$ such that
$mathrm{Ball}_F(0,r)subset T(mathrm{Ball}_E(0,1))$
$2)implies 3)$ Now set $C=r^{-1}$. Take arbitrary $yin F$ and consider $hat{y}=rVert yVert^{-1}y$. Then $hat{y}inmathrm{Ball}_E(0,r)$. From $(1)$ we get some $hat{x}inmathrm{Ball}_E(0,1)$ such that $T(hat{x})=hat{y}$. Define $x=r^{-1}Vert yVert hat{x}$. It is easy to check that $T(x)=y$ and $Vert xVertleq CVert yVert$.
$3)implies 1)$ Let $Usubset E$ be an open set. Take arbitrary $y_0in T(U)$, then there exist $x_0in U$ such that $T(x_0)=y_0$. Since $U$ is open there exist $R>0$ such that $mathrm{Ball}_E(x_0,R)subset U$. Define $r=(2C)^{-1}R$. Consider arbitrary $yin mathrm{Ball}(y_0,r)$, then there exist $hat{x}in E$ such that $T(hat{x})=y-y_0$ and $Vert hat{x}Vertleq CVert y-y_0Vertleq R/2$. Consider $x=hat{x}+x_0$. It is easy to check that $T(x)=y$ and $xinmathrm{Ball}_E(x_0,R)$. Thus for each $yinmathrm{Ball}_F(y_0,r)$ there exist $xinmathrm{Ball}_E(x_0,R)$ such that $T(x)=y$. This means that $mathrm{Ball}_F(y_0,r)subset T(mathrm{Ball}_E(x_0,R))subset T(U)$. Thus for each $y_0in T(U)$ we found $r>0$ such that $mathrm{Ball}_F(y_0,r)subset T(U)$, hence $T(U)$ is open. Since $U$ is arbitrary open set in $E$, then $T$ is open.
edited Nov 19 '12 at 15:00
answered Nov 18 '12 at 18:53
NorbertNorbert
45.8k774161
45.8k774161
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
|
show 8 more comments
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
I agree, your proof is all right =D Thanks a lot @Norbert
$endgroup$
– PtF
Nov 18 '12 at 19:03
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Why does this proof that the map is open?
$endgroup$
– Davide Giraudo
Nov 18 '12 at 19:04
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Because $Tinmathcal{B}(E,F)$ is an open mapping iff $$exists C>0quadforall yin Fquadexists xin E:quad T(x)=yquadwedgequadVert xVertleq CVert yVert$$
$endgroup$
– Norbert
Nov 18 '12 at 19:07
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
$begingroup$
Dion this is wrong consider zero operator
$endgroup$
– Norbert
Nov 18 '12 at 19:08
1
1
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
$begingroup$
One can indeed use the open mapping theorem: $C^1[0,1]$ with the norm $|f|= |f|_infty+|f'|_infty$ is Banach and the identity $(C^1[0,1],|cdot|_infty) to(C^1[0,1],|cdot|)$ is open.
$endgroup$
– Jochen
Nov 19 '12 at 11:25
|
show 8 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f240023%2fis-the-differentiation-operator-an-open-mapping%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown